AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Method | Open Access

Visualizing the Ensemble Structures of Protein Complexes Using Chemical Cross-Linking Coupled with Mass Spectrometry

Zhou Gong1,Yue-He Ding2,Xu Dong1Na Liu2E. Erquan Zhang2Meng-Qiu Dong2( )Chun Tang1( )
CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
National Institute of Biological Sciences, Beijing 102206, China

Zhou Gong and Yue-He Ding have contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Chemical cross-linking coupled with mass spectrometry (CXMS) identifies protein residues that are close in space, and has been increasingly used for modeling the structures of protein complexes. Here we show that a single structure is usually sufficient to account for the intermolecular cross-links identified for a stable complex with sub-µmol/L binding affinity. In contrast, we show that the distance between two cross-linked residues in the different subunits of a transient or fleeting complex may exceed the maximum length of the cross-linker used, and the cross-links cannot be fully accounted for with a unique complex structure. We further show that the seemingly incompatible cross-links identified with high confidence arise from alternative modes of protein-protein interactions. By converting the intermolecular cross-links to ambiguous distance restraints, we established a rigid-body simulated annealing refinement protocol to seek the minimum set of conformers collectively satisfying the CXMS data. Hence we demonstrate that CXMS allows the depiction of the ensemble structures of protein complexes and elucidates the interaction dynamics for transient and fleeting complexes.

Electronic Supplementary Material

Download File(s)
br-1-3-127-ESM.pdf (5.9 MB)

References

 

Baumli S, Lolli G, Lowe ED, Troiani S, Rusconi L, Bullock AN, Debreczeni JE, Knapp S, Johnson LN, (2008) The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation.EMBO J 27:1907-1918

 

Berg OG, Winter RB, Von Hippel PH, (1981) Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory.Biochemistry (Mosc) 20:6929-6948

 
Case DA, Darden TA, Cheatham TEI, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossva´ry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER 12. University of California, San Francisco
 

Fawzi NL, Doucleff M, Suh JY, Clore GM, (2010) Mechanistic details of a protein–protein association pathway revealed by paramagnetic relaxation enhancement titration measurements.Proc Natl Acad Sci USA 107:1379-1384

 

Gabdoulline RR, Wade RC, (2002) Biomolecular diffusional association.Curr Opin Struct Biol 12:204-213

 

Garrett DS, Seok YJ, Peterkofsky A, Gronenborn AM, Clore GM, (1999) Solution structure of the 40,000 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr.Nat Struct Biol 6:166-173

 

Herzog F, Kahraman A, Boehringer D, Mak R, Bracher A, Walzthoeni T, Leitner A, Beck M, Hartl FU, Ban N, Malmstrom L, Aebersold R, (2012) Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry.Science 337:1348-1352

 

Jiang L, Stanevich V, Satyshur KA, Kong M, Watkins GR, Wadzinski BE, Sengupta R, Xing Y, (2013) Structural basis of protein phosphatase 2A stable latency.Nat Commun 4:1699

 

Jones S, Thornton JM, (1996) Principles of protein–protein interactions.Proc Natl Acad Sci USA 93:13-20

 

Kahraman A, Malmstrom L, Aebersold R, (2011) Xwalk: computing and visualizing distances in cross-linking experiments.Bioinformatics 27:2163-2164

 

Kahraman A, Herzog F, Leitner A, Rosenberger G, Aebersold R, Malmstrom L, (2013) Cross-link guided molecular modeling with ROSETTA.PLoS One 8:e73411

 

Kalisman N, Adams CM, Levitt M, (2012) Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling.Proc Natl Acad Sci USA 109:2884-2889

 

Kastritis PL, Moal IH, Hwang H, Weng Z, Bates PA, Bonvin AM, Janin J, (2011) A structure-based benchmark for protein–protein binding affinity.Protein Sci 20:482-491

 

Lasker K, Forster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A, Baumeister W, (2012) Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach.Proc Natl Acad Sci USA 109:1380-1387

 

Lee YJ, (2009) Probability-based shotgun cross-linking sites analysis.J Am Soc Mass Spectrom 20:1896-1899

 

Leitner A, Joachimiak LA, Unverdorben P, Walzthoeni T, Frydman J, Forster F, Aebersold R, (2014) Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes.Proc Natl Acad Sci USA 111:9455-9460

 

Liu Z, Zhang WP, Xing Q, Ren X, Liu M, Tang C, (2012) Noncovalent dimerization of ubiquitin.Angew Chem Int Ed Engl 51:469-472

 

Liu Z, Gong Z, Dong X, Tang C, (2016) Transient protein–protein interactions visualized by solution NMR.Biochim Biophys Acta 1864(1):115-122

 

Lossl P, Kolbel K, Tanzler D, Nannemann D, Ihling CH, Keller MV, Schneider M, Zaucke F, Meiler J, Sinz A, (2014) Analysis of nidogen-1/laminin gamma1 interaction by cross-linking, mass spectrometry, and computational modeling reveals multiple binding modes.PLoS One 9:e112886

 

Marquart M, Walter J, Deisenhofer J, Bode W, Huber R, (1983) The geometry of the reactive site and of the peptide groups in trypsin, trypsinogen and its complexes with inhibitors.Acta Crystallogr B 39:480-490

 

Merkley ED, Rysavy S, Kahraman A, Hafen RP, Daggett V, Adkins JN, (2014) Distance restraints from crosslinking mass spectrometry: mining a molecular dynamics simulation database to evaluate lysine–lysine distances.Protein Sci 23:747-759

 

Nilges M, (1995) Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities.J Mol Biol 245:645-660

 

Nooren IM, Thornton JM, (2003) Diversity of protein–protein interactions.EMBO J 22:3486-3492

 

Petrotchenko EV, Serpa JJ, Makepeace KA, Brodie NI, Borchers CH, (2014) (14)N(15)N DXMSMS Match program for the automated analysis of LC/ESI–MS/MS crosslinking data from experiments using (15)N metabolically labeled proteins.J Proteomics 109:104-110

 

Plaschka C, Lariviere L, Wenzeck L, Seizl M, Hemann M, Tegunov D, Petrotchenko EV, Borchers CH, Baumeister W, Herzog F, Villa E, Cramer P, (2015) Architecture of the RNA polymerase II-Mediator core initiation complex.Nature 518:376-380

 

Politis A, Stengel F, Hall Z, Hernandez H, Leitner A, Walzthoeni T, Robinson CV, Aebersold R, (2014) A mass spectrometry-based hybrid method for structural modeling of protein complexes.Nat Methods 11:403-406

 

Rappsilber J, (2011) The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes.J Struct Biol 173:530-540

 

Rinner O, Seebacher J, Walzthoeni T, Mueller LN, Beck M, Schmidt A, Mueller M, Aebersold R, (2008) Identification of cross-linked peptides from large sequence databases.Nat Methods 5:315-318

 

Schilder J, Ubbink M, (2013) Formation of transient protein complexes.Curr Opin Struct Biol 23:911-918

 

Schmidt C, Robinson CV, (2014) Dynamic protein ligand interactions—insights from MS.FEBS J 281:1950-1964

 

Schreiber G, Fersht AR, (1996) Rapid, electrostatically assisted association of proteins.Nat Struct Biol 3:427-431

 

Schwieters CD, Clore GM, (2002) Reweighted atomic densities to represent ensembles of NMR structures.J Biomol NMR 23:221-225

 

Schwieters CD, Kuszewski JJ, Clore GM, (2006) Using Xplor-NIH for NMR molecular structure determination.Prog Nucl Magn Reson Spectrosc 48:47-62

 

Suh JY, Tang C, Clore GM, (2007) Role of electrostatic interactions in transient encounter complexes in protein–protein association investigated by paramagnetic relaxation enhancement.J Am Chem Soc 129:12954-12955

 

Tang C, Iwahara J, Clore GM, (2006) Visualization of transient encounter complexes in protein–protein association.Nature 444:383-386

 

Tang C, Louis JM, Aniana A, Suh JY, Clore GM, (2008) Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease.Nature 455:U692-U693

 

Taverner T, Hall NE, O’Hair RA, Simpson RJ, (2002) Characterization of an antagonist interleukin-6 dimer by stable isotope labeling, cross-linking, and mass spectrometry.J Biol Chem 277:46487-46492

 

Thalassinos K, Pandurangan AP, Xu M, Alber F, Topf M, (2013) Conformational states of macromolecular assemblies explored by integrative structure calculation.Structure 21:1500-1508

 
The PyMOL molecular graphics system, Version 1.7.4 Schrödinger, LLC
 

Vijay-Kumar S, Bugg CE, Cook WJ, (1987) Structure of ubiquitin refined at 1.8 A resolution.J Mol Biol 194:531-544

 

Vinogradova O, Qin J, (2012) NMR as a unique tool in assessment and complex determination of weak protein–protein interactions.Top Curr Chem 326:35-45

 

Walzthoeni T, Leitner A, Stengel F, Aebersold R, (2013) Mass spectrometry supported determination of protein complex structure.Curr Opin Struct Biol 23:252-260

 

Xing Q, Huang P, Yang J, Sun JQ, Gong Z, Dong X, Guo DC, Chen SM, Yang YH, Wang Y, Yang MH, Yi M, Ding YM, Liu ML, Zhang WP, Tang C, (2014) Visualizing an ultra-weak protein–protein interaction in phosphorylation signaling.Angew Chem Int Ed Engl 53:11501-11505

 

Yang B, Wu YJ, Zhu M, Fan SB, Lin J, Zhang K, Li S, Chi H, Li YX, Chen HF, Luo SK, Ding YH, Wang LH, Hao Z, Xiu LY, Chen S, Ye K, He SM, Dong MQ, (2012) Identification of cross-linked peptides from complex samples.Nat Methods 9:904-906

 

Zheng C, Yang L, Hoopmann MR, Eng JK, Tang X, Weisbrod CR, Bruce JE, (2011) Cross-linking measurements of in vivo protein complex topologies.Mol Cell Proteomics 10:M110 006841

Biophysics Reports
Pages 127-138
Cite this article:
Gong Z, Ding Y-H, Dong X, et al. Visualizing the Ensemble Structures of Protein Complexes Using Chemical Cross-Linking Coupled with Mass Spectrometry. Biophysics Reports, 2015, 1(3): 127-138. https://doi.org/10.1007/s41048-015-0015-y

302

Views

2

Downloads

27

Crossref

0

Scopus

3

CSCD

Altmetrics

Received: 23 October 2015
Accepted: 11 November 2015
Published: 28 December 2015
© The Author(s) 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return