AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Method | Open Access

Using integrated correlative cryo-light and electron microscopy to directly observe syntaphilin-immobilized neuronal mitochondria in situ

Shengliu Wang1Shuoguo Li2Gang Ji2Xiaojun Huang2Fei Sun1,2,3( )
National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
University of Chinese Academy of Sciences, Beijing, China
Show Author Information

Graphical Abstract

Abstract

Correlative cryo-fluorescence and cryo-electron microscopy (cryo-CLEM) system has been fast becoming a powerful technique with the advantage to allow the fluorescent labeling and direct visualization of the close-to-physiologic ultrastructure in cells at the same time, offering unique insights into the ultrastructure with specific cellular function. There have been various engineered ways to achieve cryo-CLEM including the commercial FEI iCorr system that integrates fluorescence microscope into the column of transmission electron microscope. In this study, we applied the approach of the cryo-CLEM-based iCorr to image the syntaphilin-immobilized neuronal mitochondria in situ to test the performance of the FEI iCorr system and determine its correlation accuracy. Our study revealed the various morphologies of syntaphilin-immobilized neuronal mitochondria that interact with microtubules and suggested that the cryo-CLEM procedure by the FEI iCorr system is suitable with a half micron-meter correlation accuracy to study the cellular organelles that have a discrete distribution and large size, e.g. mitochondrion, Golgi complex, lysosome, etc.

References

 

Abbe E, (1873) Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung.Arch Mikr Anat 9:413-468

 

Al-Amoudi A, Chang JJ, Leforestier A, McDowall A, Salamin LM, Norlen LP, Richter K, Blanc NS, Studer D, Dubochet J, (2004) Cryo-electron microscopy of vitreous sections.The EMBO journal 23:3583-3588

 

Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF, (2006) Imaging intracellular fluorescent proteins at nanometer resolution.Science 313:1642-1645

 

Boldogh IR, Pon LA, (2007) Mitochondria on the move.Trends Cell Biol 17:502-510

 

Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW, Schultz P, (1988) Cryo-electron microscopy of vitrified specimens.Q Rev Biophys 21:129-228

 

Goldstein LS, Yang Z, (2000) Microtubule-based transport systems in neurons: the roles of kinesins and dyneins.Annu Rev Neurosci 23:39-71

 

Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA, (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light.Nat Biotechnol 24:461-465

 

Gustafsson MG, (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.J Microsc 198:82-87

 

Hanein D, Volkmann N, (2011) Correlative light-electron microscopy.Adv Protein Chem Struct Biol 82:91-99

 
Heintzmann R, Cremer CG (1999) In: Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating, pp 185-196
 

Hell SW, Wichmann J, (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy.Opt Lett 19:780-782

 

Hess ST, Girirajan TP, Mason MD, (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy.Biophys J 91:4258-4272

 

Hollenbeck PJ, Saxton WM, (2005) The axonal transport of mitochondria.J Cell Sci 118:5411-5419

 

Jiang M, Chen G, (2006) High Ca2+-phosphate transfection efficiency in low-density neuronal cultures.Nat Protoc 1:695-700

 

Jun S, Ke D, Debiec K, Zhao G, Meng X, Ambrose Z, Gibson GA, Watkins SC, Zhang P, (2011) Direct visualization of HIV-1 with correlative live-cell microscopy and cryo-electron tomography.Structure 19:1573-1581

 

Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, Sheng ZH, (2008) Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation.Cell 132:137-148

 

Klar TA, Engel E, Hell SW, (2001) Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes.Phys Rev E 64:066613

 

Kukulski W, Schorb M, Welsch S, Picco A, Kaksonen M, Briggs JA, (2011) Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision.J Cell Biol 192:111-119

 

Li D, Shao L, Chen BC, Zhang X, Zhang M, Moses B, DE Milkie , Beach JR, Hammer JA3rd, Pasham M, Kirchhausen T, Baird MA, Davidson MW, Xu P, Betzig E, (2015) Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics.Science 349:aab3500

 

Lucic V, Kossel AH, Yang T, Bonhoeffer T, Baumeister W, Sartori A, (2007) Multiscale imaging of neurons grown in culture: from light microscopy to cryo-electron tomography.J Struct Biol 160:146-156

 

Mironov AA, Beznoussenko GV, (2009) Correlative microscopy: a potent tool for the study of rare or unique cellular and tissue events.J Microsc 235:308-321

 

Misgeld T, Kerschensteiner M, Bareyre FM, Burgess RW, Lichtman JW, (2007) Imaging axonal transport of mitochondria in vivo.Nat Methods 4:559-561

 

Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, Hirokawa N, (1994) KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria.Cell 79:1209-1220

 

Nicholls DG, Budd SL, (2000) Mitochondria and neuronal survival.Physiol Rev 80:315-360

 

Nogales E, Scheres SH, (2015) Cryo-EM: a unique tool for the visualization of macromolecular complexity.Mol Cell 58:677-689

 

Rintoul GL, Filiano AJ, Brocard JB, Kress GJ, Reynolds IJ, (2003) Glutamate decreases mitochondrial size and movement in primary forebrain neurons.J Neurosci 23:7881-7888

 

Rust MJ, Bates M, Zhuang X, (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).Nat Methods 3:793-795

 

Sartori A, Gatz R, Beck F, Rigort A, Baumeister W, Plitzko JM, (2007) Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography.J Struct Biol 160:135-145

 

Schneider CA, Rasband WS, Eliceiri KW, (2012) NIH image to imageJ: 25 years of image analysis.Nat Methods 9:671-675

 

Schorb M, Gaechter L, Avinoam O, Sieckmann F, Clarke M, Bebeacua C, Bykov YS, Sonnen AF, Lihl R, Briggs JA, (2016) New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography.J Struct Biol

 

Schwartz CL, Sarbash VI, Ataullakhanov FI, Mcintosh JR, Nicastro D, (2007) Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching.J Microsc-Oxford 227:98-109

 

Wolff G, Hagen C, Grunewald K, Kaufmann R, (2016) Towards correlative super-resolution fluorescence and electron cryo-microscopy.Biol cell

 

Zhang P, (2013) Correlative cryo-electron tomography and optical microscopy of cells.Curr Opin Struct Biol 23:763-770

Biophysics Reports
Pages 8-16
Cite this article:
Wang S, Li S, Ji G, et al. Using integrated correlative cryo-light and electron microscopy to directly observe syntaphilin-immobilized neuronal mitochondria in situ. Biophysics Reports, 2017, 3(1-3): 8-16. https://doi.org/10.1007/s41048-017-0035-x

293

Views

5

Downloads

11

Crossref

0

Scopus

1

CSCD

Altmetrics

Received: 19 August 2016
Accepted: 28 December 2016
Published: 21 March 2017
© The Author(s) 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return