AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Particle segmentation algorithm for flexible single particle reconstruction

Qiang Zhou1,2,( )Niyun Zhou2,Hong-Wei Wang2( )
State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China

Qiang Zhou and Niyun Zhou have contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

As single particle cryo-electron microscopy has evolved to a new era of atomic resolution, sample heterogeneity still imposes a major limit to the resolution of many macromolecular complexes, especially those with continuous conformational flexibility. Here, we describe a particle segmentation algorithm towards solving structures of molecules composed of several parts that are relatively flexible with each other. In this algorithm, the different parts of a target molecule are segmented from raw images according to their alignment information obtained from a preliminary 3D reconstruction and are subjected to single particle processing in an iterative manner. This algorithm was tested on both simulated and experimental data and showed improvement of 3D reconstruction resolution of each segmented part of the molecule than that of the entire molecule.

References

 

Amunts A, Brown A, Bai XC, Llacer JL, Hussain T, Emsley P, Long F, Murshudov G, Scheres SH, Ramakrishnan V, (2014) Structure of the yeast mitochondrial large ribosomal subunit.Science 343:1485-1489

 

Anden J, Katsevich E, Singer A, (2015) COVARIANCE ESTIMATION USING CONJUGATE GRADIENT FOR 3D CLASSIFICATION IN CRYO-EM. Proceedings.IEEE Int Symp Biomed Imaging 2015:200-204

 

Bai XC, Fernandez IS, McMullan G, Scheres SH, (2013) Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles.Elife 2:e00461

 

Bai XC, McMullan G, Scheres SH, (2015) How cryo-EM is revolutionizing structural biology.Trends Biochem Sci 40:49-57

 

Bai XC, Rajendra E, Yang G, Shi Y, Scheres SH, (2015) Sampling the conformational space of the catalytic subunit of human gamma-secretase.Elife 4:e11182

 

Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JL, Subramaniam S, (2015) 2.2 A resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitor.Science 348:1147-1151

 

Brink J, Ludtke SJ, Kong Y, Wakil SJ, Ma J, Chiu W, (2004) Experimental verification of conformational variation of human fatty acid synthase as predicted by normal mode analysis.Structure 12:185-191

 

Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SH, Ramakrishnan V, (2014) Structure of the large ribosomal subunit from human mitochondria.Science 346:718-722

 

Carazo JM, Sorzano CO, Oton J, Marabini R, Vargas J, (2015) Three-dimensional reconstruction methods in single particle analysis from transmission electron microscopy data.Arch Biochem Biophys 581:39-48

 

Chang S, Sun D, Liang H, Wang J, Li J, Guo L, Wang X, Guan C, Boruah BM, Yuan L, Feng F, Yang M, Wang L, Wang Y, Wojdyla J, Li L, Wang M, Cheng G, Wang HW, Liu Y, (2015) Cryo-EM structure of influenza virus RNA polymerase complex at 4.3 A resolution.Mol Cell 57:925-935

 

Chen S, McMullan G, Faruqi AR, Murshudov GN, Short JM, Scheres SH, Henderson R, (2013) High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy.Ultramicroscopy 135:24-35

 

Cheng Y, (2015) Single-particle cryo-EM at crystallographic resolution.Cell 161:450-457

 

Cheng Y, Grigorieff N, Penczek PA, Walz T, (2015) A primer to single-particle cryo-electron microscopy.Cell 161:438-449

 

Dashti A, Schwander P, Langlois R, Fung R, Li W, Hosseinizadeh A, Liao HY, Pallesen J, Sharma G, Stupina VA, Simon AE, Dinman JD, Frank J, Ourmazd A, (2014) Trajectories of the ribosome as a Brownian nanomachine.Proc Natl Acad Sci 111:17492-17497

 
Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A, (2006). Comparative protein structure modeling using Modeller. Current protocols in bioinformatics/editoral board, Andreas D. Baxevanis… [et al.] Chapter 5, Unit 5.6
 

Frank J, Ourmazd A, (2016) Continuous changes in structure mapped by manifold embedding of single-particle data in cryo-EM.Methods 100:61-67

 

Humphrey W, Dalke A, Schulten K, (1996) VMD: visual molecular dynamics.J Mol Graph 14(33–38):27-38

 

Ilca S, Kotecha A, Sun X, Poranen M, Stuart D, Huiskonen J, (2015) Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes.Nat Commun

 

Jin Q, Sorzano CO, de la Rosa-Trevin JM, Bilbao-Castro JR, Nunez-Ramirez R, Llorca O, Tama F, Jonic S, (2014) Iterative elastic 3D-to-2D alignment method using normal modes for studying structural dynamics of large macromolecular complexes.Structure 22:496-506

 

Katsevich E, Katsevich A, Singer A, (2015) Covariance matrix estimation for the cryo-EM heterogeneity problem.SIAM J Imaging Sci 8:126-185

 

Kucukelbir A, Sigworth FJ, Tagare HD, (2014) Quantifying the local resolution of cryo-EM density maps.Nat Methods 11:63-65

 

Kuhlbrandt W, (2014) Cryo-EM enters a new era.Elife 3:e03678

 

Leschziner AE, Nogales E, (2006) The orthogonal tilt reconstruction method: an approach to generating single-class volumes with no missing cone for ab initio reconstruction of asymmetric particles.J Struct Biol 153:284-299

 

Liao M, Cao E, Julius D, Cheng Y, (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy.Nature 504:107-112

 

Liao HY, Hashem Y, Frank J, (2015) Efficient estimation of three-dimensional covariance and its application in the analysis of heterogeneous samples in cryo-electron microscopy.Structure 23:1129-1137

 

Liu H, Cheng L, (2015) Cryo-EM shows the polymerase structures and a nonspooled genome within a dsRNA virus.Science 349:1347-1350

 

Ma J, (2005) Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes.Structure 13:373-380

 

Ma J, Karplus M, (1997) Ligand-induced conformational changes in ras p21: a normal mode and energy minimization analysis.J Mol Biol 274:114-131

 

Mindell JA, Grigorieff N, (2003) Accurate determination of local defocus and specimen tilt in electron microscopy.J Struct Biol 142:334-347

 

Nogales E, Scheres SH, (2015) Cryo-EM: a unique tool for the visualization of macromolecular complexity.Mol Cell 58:677-689

 

Penczek PA, Frank J, Spahn CM, (2006) A method of focused classification, based on the bootstrap 3D variance analysis, and its application to EF-G-dependent translocation.J Struct Biol 154:184-194

 

Penczek PA, Kimmel M, Spahn CM, (2011) Identifying conformational states of macromolecules by eigen-analysis of resampled cryo-EM images.Structure 19:1582-1590

 

Penczek PA, Fang J, Li X, Cheng Y, Loerke J, Spahn CM, (2014) CTER-rapid estimation of CTF parameters with error assessment.Ultramicroscopy 140:9-19

 

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE, (2004) UCSF Chimera–a visualization system for exploratory research and analysis.J Comput Chem 25:1605-1612

 

Radermacher M, Wagenknecht T, Verschoor A, Frank J, (1987) Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit ofEscherichia coli.J Microsc 146:113-136

 

Rosenthal PB, Henderson R, (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy.J Mol Biol 333:721-745

 

Scheres SH, (2012) A Bayesian view on cryo-EM structure determination.J Mol Biol 415:406-418

 

Scheres SH, (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination.J Struct Biol 180:519-530

 

Scheres SH, Chen S, (2012) Prevention of overfitting in cryo-EM structure determination.Nat Methods 9:853-854

 

Scheres SH, Gao H, Valle M, Herman GT, Eggermont PP, Frank J, Carazo JM, (2007) Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization.Nat Methods 4:27-29

 

Shan H, Wang Z, Zhang F, Xiong Y, Yin CC, Sun F, (2016) A local-optimization refinement algorithm in single particle analysis for macromolecular complex with multiple rigid modules.Protein Cell 7:46-62

 

Tagare HD, Kucukelbir A, Sigworth FJ, Wang H, Rao M, (2015) Directly reconstructing principal components of heterogeneous particles from cryo-EM images.J Struct Biol 191:245-262

 

Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ, (2007) EMAN2: an extensible image processing suite for electron microscopy.J Struct Biol 157:38-46

 

van Heel M, Frank J, (1981) Use of multivariate statistics in analysing the images of biological macromolecules.Ultramicroscopy 6:187-194

 

Wang HW, Nogales E, (2005) An iterative Fourier-Bessel algorithm for reconstruction of helical structures with severe Bessel overlap.J Struct Biol 149:65-78

 

Wang L, Sigworth FJ, (2009) Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy.Nature 461:292-295

 

Yan C, Hang J, Wan R, Huang M, Wong CC, Shi Y, (2015) Structure of a yeast spliceosome at 3.6-angstrom resolution.Science (New York, N.Y.) 349:1182-1191

 

Zhang W, Kimmel M, Spahn CM, Penczek PA, (2008) Heterogeneity of large macromolecular complexes revealed by 3D cryo-EM variance analysis.Structure 16:1770-1776

 

Zhang X, Ding K, Yu X, Chang W, Sun J, Zhou ZH, (2015) In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus.Nature 527:531-534

 

Zhao M, Wu S, Zhou Q, Vivona S, Cipriano D, Cheng Y, Brunger A, (2015) Mechanistic insights into the recycling machine of the SNARE complex.Nature 518:61-67

 

Zhou Q, Huang X, Sun S, Li XM, Wang HW, Sui SF, (2015) Cryo-EM structure of SNAP-SNARE assembly in 20S particle.Cell Res 25:551-560

Biophysics Reports
Pages 43-55
Cite this article:
Zhou Q, Zhou N, Wang H-W. Particle segmentation algorithm for flexible single particle reconstruction. Biophysics Reports, 2017, 3(1-3): 43-55. https://doi.org/10.1007/s41048-017-0038-7

535

Views

8

Downloads

8

Crossref

0

Scopus

1

CSCD

Altmetrics

Received: 23 February 2017
Accepted: 15 March 2017
Published: 19 May 2017
© The Author(s) 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return