AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Method | Open Access

Accelerating electron tomography reconstruction algorithm ICON with GPU

Yu Chen1,2,Zihao Wang1,2,Jingrong Zhang1,2Lun Li1,3Xiaohua Wan1Fei Sun2,4,5( )Fa Zhang1( )
Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

Yu Chen and Zihao Wang have contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Electron tomography (ET) plays an important role in studying in situ cell ultrastructure in three-dimensional space. Due to limited tilt angles, ET reconstruction always suffers from the “missing wedge” problem. With a validation procedure, iterative compressed-sensing optimized NUFFT reconstruction (ICON) demonstrates its power in the restoration of validated missing information for low SNR biological ET dataset. However, the huge computational demand has become a major problem for the application of ICON. In this work, we analyzed the framework of ICON and classified the operations of major steps of ICON reconstruction into three types. Accordingly, we designed parallel strategies and implemented them on graphics processing units (GPU) to generate a parallel program ICON-GPU. With high accuracy, ICON-GPU has a great acceleration compared to its CPU version, up to 83.7×, greatly relieving ICON’s dependence on computing resource.

References

 

Batenburg K, Sijbers J, (2011) Dart: a practical reconstruction algorithm for discrete tomography.IEEE Trans Image Process 20(9):2542

 

Carazo JM, Carrascosa JL, (1987) Restoration of direct Fourier three-dimensional reconstructions of crystalline specimens by the method of convex projections.J Microsc 145(Pt 2):159-177

 

Castaño-Díez D, Kudryashev M, Arheit M, Stahlberg H, (2012) Dynamo : a flexible, user-friendly development tool for subtomogram averaging of cryo-em data in high-performance computing environments.J Struct Biol 178(2):139

 

Chen Y, Förster F, (2014) Iterative reconstruction of cryo-electron tomograms using nonuniform fast Fourier transforms.J Struct Biol 185(3):309-316

 

Chen Y, Zhang Y, Zhang K, Deng Y, Wang S, Zhang F, Sun F, (2016) Firt: filtered iterative reconstruction technique with information restoration.J Struct Biol 195(1):49-61

 

Deng Y, Chen Y, Zhang Y, Wang S, Zhang F, Sun F, (2016) Icon: 3d reconstruction with ‘missing-information’ restoration in biological electron tomography.J Struct Biol 195(1):100

 

Donoho DL, (2006) Compressed sensing.IEEE Trans Inf Theory 52(4):1289-1306

 

Fernández JJ, (2008) High performance computing in structural determination by electron cryomicroscopy.J Struct Biol 164(1):1-6

 

Fernández JJ, Carazo JM, García I, (2004) Three-dimensional reconstruction of cellular structures by electron microscope tomography and parallel computing.J Parallel Distrib Comput 64(2):285-300

 

Fridman K, Mader A, Zwerger M, Elia N, Medalia O, (2012) Advances in tomography: probing the molecular architecture of cells.Nat Rev Mol Cell Biol 13(13):736-742

 

Gilbert P, (1972) Iterative methods for the three-dimensional reconstruction of an object from projections.J Theor Biol 36(1):105-117

 

Goldstein AA, (1965) On steepest descent.J Soc Ind Appl Math 3(1):147-151

 

Goris B, Broek WVD, Batenburg KJ, Mezerji HH, Bals S, (2012) Electron tomography based on a total variation minimization reconstruction technique.Ultramicroscopy 113(1):120-130

 

Han R, Zhang F, Wan X, Fernández JJ, Sun F, Liu Z, (2014) A marker-free automatic alignment method based on scale-invariant features.J Struct Biol 186(1):167-180

 

Keiner J, Kunis S, Potts D, (2010) Using NFFT 3—a software library for various nonequispaced fast Fourier transforms.ACM Trans Math Softw 36(4):1-30

 

Leary R, Saghi Z, Holland PAMDJ, (2013) Compressed sensing electron tomography: theory and applications.Ultramicroscopy 131(8):70-91

 

Liao X, Xiao L, Yang C, Lu Y, (2014) Milkyway-2 supercomputer: system and application.Front Comput Sci 8(3):345-356

 

Lindholm E, Nickolls J, Oberman S, Montrym J, (2008) NVIDIA tesla: a unified graphics and computing architecture.IEEE Micro 28(2):39-55

 

Lučić V, Förster F, Baumeister W, (2005) Structural studies by electron tomography: from cells to molecules.Annu Rev Biochem 74(1):833

 

Lučić V, Rigort A, Baumeister W, (2013) Cryo-electron tomography: the challenge of doing structural biology in situ.J Cell Biol 202(3):407-419

 

Mersereau RM, (1976) Direct Fourier transform techniques in 3-d image reconstruction.Comput Biol Med 6(4):247

 
NVIDIA Corp (2007) CUDA CUFFT Library
 
Radermacher M (1992) Weighted back-projection methods. In: Frank J (ed) Electron tomography. Springer, Berlin, pp 91–115
 

Rigort A, Villa E, Bäuerlein FJB, Engel BD, Plitzko JM, (2012) Chapter 14—integrative approaches for cellular cryo-electron tomography: correlative imaging and focused ion beam micromachining.Methods Cell Biol 111:259-281

 

Saghi Z, Holland DJ, Leary R, Falqui A, Bertoni G, Sederman AJ, Gladden LF, Midgley PA, (2011) Three-dimensional morphology of iron oxide nanoparticles with reactive concave surfaces. A compressed sensing-electron tomography (CS-ET) approach.Nano Lett 11(11):4666-4673

 

Saghi Z, Divitini G, Winter B, Leary R, Spiecker E, Ducati C, Midgley PA, (2015) Compressed sensing electron tomography of needle-shaped biological specimens—potential for improved reconstruction fidelity with reduced dose.Ultramicroscopy 160:230-238

 

Sezan MI, Stark H, (1983) Image restoration by convex projections in the presence of noise.Appl Opt 22(18):2781

 

Yahav T, Maimon T, Grossman E, Dahan I, Medalia O, (2011) Cryo-electron tomography: gaining insight into cellular processes by structural approaches.Curr Opin Struct Biol 21(5):670-677

 

Yang SC, Wang YL, Jiao GS, Qian HJ, Lu ZY, (2015) Accelerating electrostatic interaction calculations with graphical processing units based on new developments of ewald method using non-uniform fast Fourier transform.J Comput Chem 37(3):378

 
Yang SC, Qian HJ, Lu ZY (2016) A new theoretical derivation of NFFT and its implementation on GPU. Appl Comput Harmon Anal. doi:10.1016/j.acha.2016.04.009
Biophysics Reports
Pages 36-42
Cite this article:
Chen Y, Wang Z, Zhang J, et al. Accelerating electron tomography reconstruction algorithm ICON with GPU. Biophysics Reports, 2017, 3(1-3): 36-42. https://doi.org/10.1007/s41048-017-0041-z

440

Views

6

Downloads

16

Crossref

0

Scopus

2

CSCD

Altmetrics

Received: 09 February 2017
Accepted: 07 April 2017
Published: 04 July 2017
© The Author(s) 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return