AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

AIM interneurons mediate feeding suppression through the TYRA-2 receptor in C. elegans

Jiajun Fu1,2Haining Zhang1,3Wenming Huang1,3Xinyu Zhu1,3Yi Sheng1,3Eli Song1( )Tao Xu1,2,3( )
National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Show Author Information

Graphical Abstract

Abstract

Feeding behavior is the most fundamental behavior in C. elegans. Our previous results have dissected the central integration circuit for the regulation of feeding, which integrates opposing sensory inputs and regulates feeding behavior in a nonlinear manner. However, the peripheral integration that acts downstream of the central integration circuit to modulate feeding remains largely unknown. Here, we find that a Gαi/o-coupled tyramine receptor, TYRA-2, is involved in peripheral feeding suppression. TYRA-2 suppresses feeding behavior via the AIM interneurons, which receive tyramine/octopamine signals from RIM/RIC neurons in the central integration circuit. Our results reveal previously unidentified roles for the receptor TYRA-2 and the AIM interneurons in feeding regulation, providing a further understanding of how biogenic amines tyramine and octopamine regulate feeding behavior.

References

 

Alkema MJ, Hunter-Ensor M, Ringstad N, Horvitz HR, (2005) Tyramine Functions independently of octopamine in the Caenorhabditis elegans nervous system.Neuron 46:247-260

 
Altun-Gultekin Z, Andachi Y, Tsalik EL, Pilgrim D, Kohara Y, Hobert O (2001) A regulatory cascade of three homeobox genes,ceh-10,ttx-3 andceh-23, controls cell fate specification of a defined interneuron class inC. elegans. Development (Cambridge, England) 128: 1951-1969
 

Aurelio O, Hall DH, Hobert O, (2002) Immunoglobulin-domain proteins required for maintenance of ventral nerve cord organization.Science 295:686-690

 

Avery L, Horvitz HR, (1990) Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans.J Exp Zool 253(3):263-270

 

Bany IA, Dong MQ, Koelle MR, (2003) Genetic and cellular basis for acetylcholine inhibition of Caenorhabditis elegans egg-laying behavior.J Neurosci 23:8060-8069

 
Bargmann CI (2006) Chemosensation inC. elegans. In: WormBook: the online review ofC elegans biology. pp 1–29
 

Bargmann CI, Hartwieg E, Horvitz HR, (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans.Cell 74(3):515-527

 

Barrios A, Ghosh R, Fang C, Emmons SW, Barr MM, (2012) PDF-1 neuropeptide signaling modulates a neural circuit for mate-searching behavior in C. elegans.Nat Neurosci 15:1675-1682

 

Bergamasco C, Bazzicalupo P, (2006) Chemical sensitivity in Caenorhabditis elegans.Cellular and molecular life sciences: CMLS 63:1510-1522

 

Brenner S, (1974) The genetics of Caenorhabditis elegans.Genetics 77:71-94

 

Chao MY, Komatsu H, Fukuto HS, Dionne HM, Hart AC, (2004) Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit.Proc Natl Acad Sci USA 101:15512-15517

 

Chen JJ, Wilkinson JR, (2012) The monoamine oxidase type B inhibitor rasagiline in the treatment of Parkinson disease: is tyramine a challenge? J Clin Pharmacol 52:620-628

 

Chow BY, Han X, Boyden ES, (2012) Genetically encoded molecular tools for light-driven silencing of targeted neurons.Prog Brain Res 196:49-61

 

Greer ER, Perez CL, Van Gilst MR, Lee BH, Ashrafi K, (2008) Neural and molecular dissection of a C. elegans sensory circuit that regulates fat and feeding.Cell Metab 8:118-131

 

Jones D, Candido EP, (1999) Feeding is inhibited by sublethal concentrations of toxicants and by heat stress in the nematodeCaenorhabditis elegans: relationship to the cellular stress response.J Exp Zool 284(2):147-157

 

Keane J, Avery L, (2003) Mechanosensory inputs influence Caenorhabditis elegans pharyngeal activity via ivermectin sensitivity genes.Genetics 164(1):153-162

 
Li C, Kim K (2008) Neuropeptides. In: WormBook: the online review ofC elegans biology. pp 1–36
 

Li Z, Li Y, Yi Y, Huang W, Yang S, Niu W, Zhang L, Xu Z, Qu A, Wu Z, Xu T, (2012) Dissecting a central flip-flop circuit that integrates contradictory sensory cues in C. elegans feeding regulation.Nat Commun 3:776

 

Mendel JE, Korswagen HC, Liu KS, Hajdu-Cronin YM, Simon MI, Plasterk RH, Sternberg PW, (1995) Participation of the protein Go in multiple aspects of behavior in C. elegans.Science 267:1652-1655

 

Nelson LS, Rosoff ML, Li C, (1998) Disruption of a neuropeptide gene, flp-1, causes multiple behavioral defects in Caenorhabditis elegans.Science 281:1686-1690

 

Rex E, Komuniecki RW, (2002) Characterization of a tyramine receptor from Caenorhabditis elegans.J Neurochem 82:1352-1359

 

Rex E, Hapiak V, Hobson R, Smith K, Xiao H, Komuniecki R, (2005) TYRA-2 (F01E11.5): a Caenorhabditis elegans tyramine receptor expressed in the MC and NSM pharyngeal neurons.J Neurochem 94:181-191

 

Ringstad N, Abe N, Horvitz HR, (2009) Ligand-gated chloride channels are receptors for biogenic amines inC. elegans.Science 325:96-100

 

Rogers CM, Franks Cj, Walker Rj, Burke JF, Holden-Dye L, (2001) Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine, and FMRFamide-like neuropeptides.J Neurobiol 49(3):235-244

 

Rumore MM, Roth M, Orfanos A, (2010) Dietary tyramine restriction for hospitalized patients on linezolid: an update.Nutr Clin Prac 25:265-269

 

Sawin ER, Ranganathan R, Horvitz HR, (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway.Neuron 26(3):619-631

 

Segalat L, Elkes DA, Kaplan JM, (1995) Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans.Science 267:1648-1651

 

Serrano-Saiz E, Poole RJ, Felton T, Zhang F, De La Cruz ED, Hobert O, (2013) Modular control of glutamatergic neuronal identity in C. elegans by distinct homeodomain proteins.Cell 155:659-673

 

Sze JY, Victor M, Loer C, Shi Y, Ruvkun G, (2000) Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant.Nature 403(6769):560-564

 

Vidal-Gadea A, Topper S, Young L, Crisp A, Kressin L, Elbel E, Maples T, Brauner M, Erbguth K, Axelrod A, Gottschalk A, Siegel D, Pierce-Shimomura JT, (2011) Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin.Proc Nat Acad Sci USA 108:17504-17509

 

White JG, Southgate E, Thomson JN, Brenner S, (1986) The structure of the nervous system of the nematode Caenorhabditis elegans.Philos Trans R Soc B 314:1-340

 

Xu K, Lee F, Gao SJ, Chung JE, Yano H, Kurisawa M, (2013) Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-alpha2a for liver cancer therapy.J Controll Release 166:203-210

 

Yoshida K, Hirotsu T, Tagawa T, Oda S, Wakabayashi T, Iino Y, Ishihara T, (2012) Odour concentration-dependent olfactory preference change in C. elegans.Nat commun 3:739

Biophysics Reports
Pages 17-24
Cite this article:
Fu J, Zhang H, Huang W, et al. AIM interneurons mediate feeding suppression through the TYRA-2 receptor in C. elegans. Biophysics Reports, 2018, 4(1): 17-24. https://doi.org/10.1007/s41048-018-0046-2

289

Views

6

Downloads

4

Crossref

0

Scopus

1

CSCD

Altmetrics

Received: 12 May 2017
Accepted: 23 May 2017
Published: 05 March 2018
© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return