AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Characterization of dendritic cell subtypes in human cord blood by single-cell sequencing

Xiaoyang Jin1,2Lingyuan Meng3Zhao Yin4Haisheng Yu5Linnan Zhang1,2Weifeng Liang1,2Shouli Wang4Guanyuan Liu3( )Liguo Zhang1,2( )
Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
University of Chinese Academy of Sciences, Beijing 100080, China
Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
Department of Cardiology, 306th Hospital of PLA, Beijing 100101, China
Key Laboratory of Human Disease Comparative Medicine and Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Institute of Laboratory Animal Science (ILAS), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing 100021, China
Show Author Information

Graphical Abstract

Abstract

Dendritic cells (DCs) are professional antigen-presenting cells (APCs). The key functions of DCs include engulfing, processing and presenting antigens to T cells and regulating the activation of T cells. There are two major DC subtypes in human blood: plasmacytoid DCs (pDCs) and conventional DCs. To define the differences between the adult and infant immune systems, especially in terms of DC constitution, we enriched DCs from human cord blood and generated single-cell RNA sequencing data from about 7000 cells using the 10x Genomics Single Cell 3′ Solution. After incorporating the differential expression analysis method in our clustering process, we identified all the known dendritic cell subsets. Interestingly, we also found a group of DCs with gene expression that was a mix of megakaryocytes and pDCs. Further, we verified the expression of selected genes at both the RNA level by PCR and the protein level by flow cytometry. This study further demonstrates the power of single-cell RNA sequencing in dendritic cell research.

Electronic Supplementary Material

Download File(s)
br-5-4-199-ESM1.pdf (1,022.3 KB)
br-5-4-199-ESM2.pdf (1.3 MB)

References

 

Amir ED, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe’er D, (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia.Nat Biotechnol 31(6):545-552

 

Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, Ginhoux F, Newell EW, (2018) Dimensionality reduction for visualizing single-cell data using UMAP.Nat Biotechnol 37:38-44

 

Buenrostro JD, Wu B, Chang HY, Greenleaf WJ, (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide.Curr Protoc Mol Biol

 

Butler A, Hoffman P, Smibert P, Papalexi E, Satija R, (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species.Nat Biotechnol 36(5):411-420

 

Collin M, Bigley V, (2018) Human dendritic cell subsets: an update.Immunology 154(1):3-20

 

DePasquale EAK, Schnell DJ, Valiente I, Blaxall BC, Grimes HL, Singh H, Salomonis N, (2018) DoubletDecon: cell-state aware removal of single-cell RNA-Seq doublets.bioRxiv 1:2

 

Ginhoux F, See P, Lum J, Chen J, (2018) A single-cell sequencing guide for immunologists.Front Immunol 9:2425

 

Haghverdi L, Lun ATL, Morgan MD, Marioni JC, (2018) Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.Nat Biotechnol 36(5):421-427

 

Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A, Amit I, (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types.Science 343(6172):776-779

 

McGinnis CS, Murrow LM, Gartner ZJ, (2018) DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors.bioRxiv 8(4):329-337

 
McInnes L, Healy J, Melville J (2018) UMAP: uniform manifold approximation and projection for dimension reduction. arXiv. preprintarXiv:1802.03426
 

Merad M, Sathe P, Helft J, Miller J, Mortha A, (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting.Annu Rev Immunol 31:563-604

 

Mills EW, Green R, Ingolia NT, (2017) Slowed decay of mRNAs enhances platelet specific translation.Blood 129(17):e38-e48

 

Oetjen KA, Lindblad KE, Goswami M, Gui G, Dagur PK, Lai C, Dillon LW, McCoy JP, Hourigan CS, (2018) Human bone marrow assessment by single-cell RNA sequencing, mass cytometry, and flow cytometry.JCI Insight 3(23):124928

 

Schuller SS, Sadeghi K, Wisgrill L, Dangl A, Diesner SC, Prusa AR, Klebermasz-Schrehof K, Greber-Platzer S, Neumuller J, Helmer H, Husslein P, Pollak A, Spittler A, Forster-Waldl E, (2013) Preterm neonates display altered plasmacytoid dendritic cell function and morphology.J Leukoc Biol 93(5):781-788

 

See P, Dutertre C-A, Chen J, Günther P, McGovern N, Irac SE, Gunawan M, Beyer M, Händler K, Duan K, Bin Sumatoh HR, Ruffin N, Jouve M, Gea-Mallorquí E, Hennekam RCM, Lim T, Yip CC, Wen M, Malleret B, Low I, Shadan NB, Fen CFS, Tay A, Lum J, Zolezzi F, Larbi A, Poidinger M, Chan JKY, Chen Q, Rénia L, Haniffa M, Benaroch P, Schlitzer A, Schultze JL, Newell EW, Ginhoux F, (2017) Mapping the human DC lineage through the integration of high-dimensional techniques.Science 356(6342):eaag3009

 

Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, Chen P, Gertner RS, Gaublomme JT, Yosef N, Schwartz S, Fowler B, Weaver S, Wang J, Wang X, Ding R, Raychowdhury R, Friedman N, Hacohen N, Park H, May AP, Regev A, (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation.Nature 510(7505):363-369

 

Villani A-C, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M, Butler A, Zheng S, Lazo S, Jardine L, Dixon D, Stephenson E, Nilsson E, Grundberg I, McDonald D, Filby A, Li W, De Jager PL, Rozenblatt-Rosen O, Lane AA, Haniffa M, Regev A, Hacohen N, (2017) Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors.Science 356(6335):eaag4573

 

Waskow C, Liu K, Darrasse-Jèze G, Guermonprez P, Ginhoux F, Merad M, Shengelia T, Yao K, Nussenzweig M, (2008) The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues.Nat Immunol 9(6):676-683

 

Willems F, Vollstedt S, Suter M, (2009) Phenotype and function of neonatal DC.Eur J Immunol 39(1):26-35

 

Wolock SL, Lopez R, Klein AM, (2018) Scrublet: computational identification of cell doublets in single-cell transcriptomic data.bioRxiv 8(4):281-291

 

Yin X, Yu H, Jin X, Li J, Guo H, Shi Q, Yin Z, Xu Y, Wang X, Liu R, Wang S, Zhang L, (2017) Human blood CD1c+ dendritic cells encompass CD5high and CD5low subsets that differ significantly in phenotype, gene expression, and functions.J Immunol 198(4):1553-1564

 

Yu H, Zhang P, Yin X, Yin Z, Shi Q, Cui Y, Liu G, Wang S, Piccaluga PP, Jiang T, Zhang L, (2015) Human BDCA2 + CD123 + CD56 + dendritic cells (DCs) related to blastic plasmacytoid dendritic cell neoplasm represent a unique myeloid DC subset.Protein Cell. 6(4):297-306

 

Zhang X, Lepelley A, Azria E, Lebon P, Roguet G, Schwartz O, Launay O, Leclerc C, Lo-Man R, (2013) Neonatal plasmacytoid dendritic cells (pDCs) display subset variation but can elicit potent anti-viral innate responses.PLoS ONE 8(1):e52003

 

Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH, (2017) Massively parallel digital transcriptional profiling of single cells.Nat Commun 8:14049

 

Zheng S, Papalexi E, Butler A, Stephenson W, Satija R, (2018) Molecular transitions in early progenitors during human cord blood hematopoiesis.Mol Syst Biol 14(3):e8041

Biophysics Reports
Pages 199-208
Cite this article:
Jin X, Meng L, Yin Z, et al. Characterization of dendritic cell subtypes in human cord blood by single-cell sequencing. Biophysics Reports, 2019, 5(4): 199-208. https://doi.org/10.1007/s41048-019-00096-5

360

Views

7

Downloads

9

Crossref

0

Scopus

0

CSCD

Altmetrics

Received: 25 March 2019
Accepted: 14 April 2019
Published: 30 September 2019
© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return