AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Refining RNA solution structures with the integrative use of label-free paramagnetic relaxation enhancement NMR

Zhou Gong1( )Shuai Yang1,2Qing-Fen Yang1Yue-Ling Zhu1,2Jing Jiang1Chun Tang1,3( )
CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan 430071, Hubei, China
University of Chinese Academy of Sciences, Beijing 100049, China
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
Show Author Information

Graphical Abstract

Abstract

NMR structure calculation is inherently integrative, and can incorporate new experimental data as restraints. As RNAs have lower proton densities and are more conformational heterogenous than proteins, the refinement of RNA structures can benefit from additional types of restraints. Paramagnetic relaxation enhancement (PRE) provides distance information between a paramagnetic probe and protein or RNA nuclei. However, covalent conjugation of a paramagnetic probe is difficult for RNAs, thus limiting the use of PRE NMR for RNA structure characterization. Here, we show that the solvent PRE can be accurately measured for RNA labile imino protons, simply with the addition of an inert paramagnetic cosolute. Demonstrated on three RNAs that have increasingly complex topologies, we show that the incorporation of the solvent PRE restraints can significantly improve the precision and accuracy of RNA structures. Importantly, the solvent PRE data can be collected for RNAs without isotope enrichment. Thus, the solvent PRE method can work integratively with other biophysical techniques for better characterization of RNA structures.

Electronic Supplementary Material

Download File(s)
br-5-5-6-244-ESM.pdf (322.6 KB)

References

 

Barnwal RP, Yang F, Varani G, (2017) Applications of NMR to structure determination of RNAs large and small.Arch Biochem Biophys

 

Bellaousov S, Reuter JS, Seetin MG, Mathews DH, (2013) RNAstructure: web servers for RNA secondary structure prediction and analysis.Nucleic Acids Res 41(Web Server issue):W471-W474

 

Bhan A, Soleimani M, Mandal SS, (2017) Long noncoding RNA and cancer: a new paradigm.Cancer Res 77(15):3965-3981

 

Bhandari YR, Jiang W, Stahlberg EA, Stagno JR, Wang YX, (2016) Modeling RNA topological structures using small angle X-ray scattering.Methods 103:18-24

 

Borkar Aditi N., Vallurupalli Pramodh, Camilloni Carlo, Kay Lewis E., Vendruscolo Michele, (2017) Simultaneous NMR characterisation of multiple minima in the free energy landscape of an RNA UUCG tetraloop.Physical Chemistry Chemical Physics 19(4):2797-2804

 

Butcher SE, Pyle AM, (2011) The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.Acc Chem Res 44(12):1302-1311

 

Chu WC, Horowitz J, (1989) 19F NMR of 5-fluorouracil-substituted transfer RNA transcribed in vitro: resonance assignment of fluorouracil-guanine base pairs.Nucleic Acids Res 17(18):7241-7252

 

Clore GM, Iwahara J, (2009) Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes.Chem Rev 109(9):4108-4139

 

Clore GM, Kuszewski J, (2003) Improving the accuracy of NMR structures of RNA by means of conformational database potentials of mean force as assessed by complete dipolar coupling cross-validation.J Am Chem Soc 125(6):1518-1525

 

Dethoff EA, Hansen AL, Musselman C, Watt ED, Andricioaei I, Al-Hashimi HM, (2008) Characterizing complex dynamics in the transactivation response element apical loop and motional correlations with the bulge by NMR, molecular dynamics, and mutagenesis.Biophys J 95(8):3906-3915

 

Duchardt E, Schwalbe H, (2005) Residue specific ribose and nucleobase dynamics of the cUUCGg RNA tetraloop motif by MNMR 13C relaxation.J Biomol NMR 32(4):295-308

 

Duss O, Maris C, von Schroetter C, Allain FH, (2010) A fast, efficient and sequence-independent method for flexible multiple segmental isotope labeling of RNA using ribozyme and RNase H cleavage.Nucleic Acids Res 38(20):e188

 

Duss O, Diarra Dit Konte N, Allain FH, (2015) Cut and paste RNA for nuclear magnetic resonance, paramagnetic resonance enhancement, and electron paramagnetic resonance structural studies.Methods Enzymol 565:537-562

 

Eddy SR, (2001) Non-coding RNA genes and the modern RNA world.Nat Rev Genet 2(12):919-929

 

Edwards TE, Sigurdsson ST, (2007) Site-specific incorporation of nitroxide spin-labels into 2′-positions of nucleic acids.Nat Protoc 2(8):1954-1962

 

Franke D, Petoukhov MV, Konarev PV, Panjkovich A, Tuukkanen A, Mertens HDT, Kikhney AG, Hajizadeh NR, Franklin JM, Jeffries CM, Svergun DI, (2017) ATSAS 28: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions.J Appl Crystallogr 50(Pt 4):1212-1225

 

Furtig B, Richter C, Wohnert J, Schwalbe H, (2003) NMR spectroscopy of RNA.Chem Bio Chem 4:936-962

 

Gong Z, Schwieters CD, Tang C, (2015) Conjoined use of EM and NMR in RNA structure refinement.PLoS One 10(3):e0120445

 

Gong Z, Gu XH, Guo DC, Wang J, Tang C, (2017) Protein structural ensembles visualized by solvent paramagnetic relaxation enhancement.Angew Chem Int Ed Engl 56(4):1002-1006

 

Gong Z, Schwieters CD, Tang C, (2018) Theory and practice of using solvent paramagnetic relaxation enhancement to characterize protein conformational dynamics.Methods 148:48-56

 

Grishaev A, Ying J, Canny MD, Pardi A, Bax A, (2008) Solution structure of tRNAVal from refinement of homology model against residual dipolar coupling and SAXS data.J Biomol NMR 42(2):99-109

 

Gu XH, Gong Z, Guo DC, Zhang WP, Tang C, (2014) A decadentate Gd(III)-coordinating paramagnetic cosolvent for protein relaxation enhancement measurement.J Biomol NMR 58(3):149-154

 

Hansen MR, Mueller L, Pardi A, (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions.Nat Struct Biol 5(12):1065-1074

 

Hansen MR, Hanson P, Pardi A, (2000) Filamentous bacteriophage for aligning RNA, DNA, and proteins for measurement of nuclear magnetic resonance dipolar coupling interactions.Methods Enzymol 317:220-240

 

Hartlmuller C, Gunther JC, Wolter AC, Wohnert J, Sattler M, Madl T, (2017) RNA structure refinement using NMR solvent accessibility data.Sci Rep 7(1):5393

 

Helmling C, Bessi I, Wacker A, Schnorr KA, Jonker HR, Richter C, Wagner D, Kreibich M, Schwalbe H, (2014) Noncovalent spin labeling of riboswitch RNAs to obtain long-range structural NMR restraints.ACS Chem Biol 9:1330-1339

 

Herschlag D, Bonilla S, Bisaria N, (2018) The story of RNA folding, as told in epochs.Cold Spring Harb Perspect Biol

 

Iwahara J, Tang C, Marius Clore G, (2007) Practical aspects of (1)H transverse paramagnetic relaxation enhancement measurements on macromolecules.J Magn Reson 184(2):185-195

 

Kang HJr, Tinoco I, (1997) A mutant RNA pseudoknot that promotes ribosomal frameshifting in mouse mammary tumor virus.Nucleic Acids Res 25(10):1943-1949

 

Kappel K, Liu SH, Larsen KP, Skiniotis G, Puglisi EV, Puglisi JD, Zhou ZH, Zhao R, Das R, (2018) De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes.Nat Methods 15(11):947-954

 

Larsen KP, Choi J, Prabhakar A, Puglisi EV, Puglisi JD, (2019) Relating structure and dynamics in RNA biology.Cold Spring Harb Perspect Biol

 

Liu Z, Gong Z, Guo DC, Zhang WP, Tang C, (2014) Subtle dynamics of holo glutamine binding protein revealed with a rigid paramagnetic probe.Biochemistry

 

Liu Z, Gong Z, Jiang WX, Yang J, Zhu WK, Guo DC, Zhang WP, Liu ML, Tang C, (2015) Lys63-linked ubiquitin chain adopts multiple conformational states for specific target recognition.Elife

 

Liu Z, Gong Z, Dong X, Tang C, (2016) Transient protein–protein interactions visualized by solution NMR.Biochim Biophys Acta Bioenerg 1864(1):115-122

 

Mingsong Liu W-CC, Liu Jack C-H, Horowitz J, (1997) Role of acceptor stem conformation in tRNAVal recognition by its cognate synthetase.Nucleic Acids Res 25(24):4883-4890

 

Murray LJW, Arendall WB, Richardson DC, Richardson JS, (2003) RNA backbone is rotameric.Proc Natl Acad Sci USA 100(24):13904-13909

 

Nozinovic S, Furtig B, Jonker HR, Richter C, Schwalbe H, (2010) High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA.Nucleic Acids Res 38(2):683-694

 

Parisien M, Major F, (2008) The MC-fold and MC-Sym pipeline infers RNA structure from sequence data.Nature 452(7183):51-55

 

Pintacuda G, Otting G, (2002) Identification of protein surfaces by NMR measurements with a pramagnetic Gd(III) chelate.J Am Chem Soc 124(3):372-373

 

Ponce-Salvatierra A, Astha , Merdas K, Nithin C, Ghosh P, Mukherjee S, Bujnicki JM, (2019) Computational modeling of RNA 3D structure based on experimental data.Biosci Rep

 

Schlick T, Pyle AM, (2017) Opportunities and challenges in RNA structural modeling and design.Biophys J 113(2):225-234

 

Schwieters CD, Clore GM, (2014) Using small angle solution scattering data in Xplor-NIH structure calculations.Prog Nucl Magn Reson Spectrosc 80:1-11

 

Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM, (2003) The Xplor-NIH NMR molecular structure determination package.J Magn Reson 160(1):65-73

 

Schwieters CD, Bermejo GA, Clore GM, (2018) Xplor-NIH for molecular structure determination from NMR and other data sources.Protein Sci 27:26-40

 

Suddala KC, Walter NG, (2014) Riboswitch structure and dynamics by smFRET microscopy.Riboswitch Discov Struct Funct 549:343-373

 

Svergun D, Barberato C, Koch MHJ, (1995) CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates.J Appl Crystallogr 28:768-773

 

Wang Y, Schwieters CD, Tjandra N, (2012) Parameterization of solvent–protein interaction and its use on NMR protein structure determination.J Magn Reson 221:76-84

 

Warhaut S, Mertinkus KR, Hollthaler P, Furtig B, Heilemann M, Hengesbach M, Schwalbe H, (2017) Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy.Nucleic Acids Res 45(9):5512-5522

 

Wilusz JE, Sunwoo H, Spector DL, (2009) Long noncoding RNAs: functional surprises from the RNA world.Genes Dev 23(13):1494-1504

 

Wunderlich CH, Huber RG, Spitzer R, Liedl KR, Kloiber K, Kreutz C, (2013) A novel paramagnetic relaxation enhancement tag for nucleic acids: a tool to study structure and dynamics of RNA.ACS Chem Biol

 

Zhang XJ, Cekan P, Sigurdsson ST, Qin PZ, (2009) Studying RNA using site-directed spin-labeling and continuous-wave electron paramagnetic resonance spectroscopy.Methods Enzymol 469:303-328

 

Zhang H, Zhang C, Li Z, Li C, Wei X, Zhang B, Liu Y, (2019) A new method of RNA secondary structure prediction based on convolutional neural network and dynamic programming.Front Genet 10:467

 

Zhao Y, Wang J, Zeng C, Xiao Y, (2018) Evaluation of RNA secondary structure prediction for both base-pairing and topology.Biophys Rep 4(3):123-132

 

Zuker M, (2003) Mfold web server for nucleic acid folding and hybridization prediction.Nucleic Acids Res 31(13):3406-3415

Biophysics Reports
Pages 244-253
Cite this article:
Gong Z, Yang S, Yang Q-F, et al. Refining RNA solution structures with the integrative use of label-free paramagnetic relaxation enhancement NMR. Biophysics Reports, 2019, 5(5-6): 244-253. https://doi.org/10.1007/s41048-019-00099-2

414

Views

8

Downloads

4

Crossref

0

Scopus

0

CSCD

Altmetrics

Received: 01 August 2019
Accepted: 08 October 2019
Published: 15 November 2019
© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return