AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A genetically encoded ratiometric calcium sensor enables quantitative measurement of the local calcium microdomain in the endoplasmic reticulum

Chen Luo1,2Huiyu Wang1,2Qi Liu1,2Wenting He1Lin Yuan1( )Pingyong Xu1,2( )
Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Abstract

The local Ca2+ release from the heterogeneously distributed endoplasmic reticulum (ER) calcium store has a critical role in calcium homeostasis and cellular function. However, single fluorescent protein-based ER calcium probes experience challenges in quantifying the ER calcium store in differing live cells, and intensity-based measurements make it difficult to detect local calcium microdomains in the ER. Here, we developed a genetically encoded ratiometric ER calcium indicator (GCEPIA1-SNAPER) that can detect the real-time ER calcium store and local calcium microdomains in live cells. GCEPIA1-SNAPER was located in the lumen of the ER and showed a linear, reversible and rapid response to changes in the ER calcium store. The GCEPIA1-SNAPER probe effectively monitored the depletion of the ER calcium store by TG or starvation treatment, and through its use we identified heterogeneously distributed calcium microdomains in the ER which were correlated with the distribution of STIM1 clusters upon ER calcium store depletion. Lastly, GCEPIA1-SNAPER can be used to detect the ER calcium store by high-throughput flow cytometry and confers the ability to study the function of calcium microdomains of the ER.

Electronic Supplementary Material

Download File(s)
br-5-1-31-ESM.pdf (506 KB)

References

 

Akerboom J, Chen T-W, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderón NC, Esposti F, Borghuis BG, Sun XR, (2012) Optimization of a GCaMP calcium indicator for neural activity imaging.J Neurosci 32:13819-13840

 

Carreras-Sureda A, Pihán P, Hetz C, (2017) Calcium signaling at the endoplasmic reticulum: fine-tuning stress responses.Cell Calcium 70:24-31

 

Cho J-H, Swanson CJ, Chen J, Li A, Lippert LG, Boye SE, Rose K, Sivaramakrishnan S, Chuong C-M, Chow RH, (2017) The GCaMP-R family of genetically encoded ratiometric calcium indicators.ACS Chem Biol 12:1066-1074

 

Clapham DE, (2007) Calcium signaling.Cell 131:1047-1058

 

Cole NB, (2013) Site-specific protein labeling with SNAP-tags.Curr Protoc Protein Sci

 

Ghislat G, Knecht E, (2012) New Ca2+-dependent regulators of autophagosome maturation.Commun Integr Biol 5:308-311

 

Icha J, Weber M, Waters JC, Norden C, (2017) Phototoxicity in live fluorescence microscopy, and how to avoid it.BioEssays 39:1700003

 

Koldenkova VP, Nagai T, (2013) Genetically encoded Ca2+ indicators: properties and evaluation.Biochim Biophys Acta Mol Cell Res 1833:1787-1797

 

Liou J, Kim ML, Do Heo W, Jones JT, Myers JW, Ferrell JEJr, Meyer T, (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx.Curr Biol 15:1235-1241

 

Mao T, O’Connor DH, Scheuss V, Nakai J, Svoboda K, (2008) Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators.PLoS ONE 3:e1796

 

Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS, (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1.Cell 136:876-890

 

Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet J-P, (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1).Nat Cell Biol 8:771

 

Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG, (2006) Orai1 is an essential pore subunit of the CRAC channel.Nature 443:230

 

Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T, (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses.Science 280:1763-1766

 

Shigetomi E, Kracun S, Khakh BS, (2010) Monitoring astrocyte calcium microdomains with improved membrane targeted GCaMP reporters.Neuron Glia Biol 6:183-191

 

Stutzmann GE, (2005) Calcium dysregulation, IP3 signaling, and Alzheimer’s disease.The Neuroscientist 11:110-115

 

Suzuki J, Kanemaru K, Ishii K, Ohkura M, Okubo Y, Iino M, (2014) Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA.Nat Commun 5:4153

 

Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators.Nat Methods 6:875

 

Wäldchen S, Lehmann J, Klein T, Van De Linde S, Sauer M, (2015) Light-induced cell damage in live-cell super-resolution microscopy.Sci Rep 5:15348

 

Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD, (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane.Nature 437:902

 

Zhao Y, Araki S, Wu J, Teramoto T, Chang Y-F, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, (2011) An expanded palette of genetically encoded Ca2+ indicators.Science

Biophysics Reports
Pages 31-42
Cite this article:
Luo C, Wang H, Liu Q, et al. A genetically encoded ratiometric calcium sensor enables quantitative measurement of the local calcium microdomain in the endoplasmic reticulum. Biophysics Reports, 2019, 5(1): 31-42. https://doi.org/10.1007/s41048-019-0082-6

385

Views

5

Downloads

18

Crossref

0

Scopus

3

CSCD

Altmetrics

Received: 06 September 2018
Accepted: 15 November 2018
Published: 27 February 2019
© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return