AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Recent Endeavors on Molecular Imaging for Mapping Metals in Biology

Jing Gao1Yuncong Chen1,2( )Zijian Guo1,2Weijiang He1( )
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
Chemistry and Biomedicine Innovation Center Nanjing University 210023 Nanjing China
Show Author Information

Graphical Abstract

Abstract

Transition metals such as zinc, copper and iron play vital roles in maintaining physiological functions and homeostasis of living systems. Molecular imaging, including two-photon imaging (TPI), bioluminescence imaging (BLI) and photoacoustic imaging (PAI), could act as non-invasive toolkits for capturing dynamic events in living cells, tissues and whole animals. Herein, we review the recent progress in the development of molecular probes for essential transition metals and their biological applications. We emphasize the contributions of metallostasis to health and disease, and discuss the future research directions about how to harness the great potential of metal sensors.

References

 

Ackerman CM, Lee S, Chang CJ, (2017) Analytical methods for imaging metals in biology: from transition metal metabolism to transition metal signaling. Anal Chem 89(1):22-41

 

Andersson M, Mattle D, Sitsel O, Klymchuk T, Nielsen AM, Møller LB, White SH, Nissen P, Gourdon P, (2014) Copper-transporting P-type ATPases use a unique ion-release pathway. Nat Struct Mol Biol 21(1):43-48

 

Andrews NC, (2000) Iron metabolism: iron deficiency and iron overload. Annu Rev Genomics Hum Genet 1(1):75-98

 

Aron A, Heffern M, Lonergan Z, Wal M, Blank B, Spangler B, Zhang Y, Park HM, Stahl A, Renslo A, Skaar E, Chang C, (2017) In vivo bioluminescence imaging of labile iron accumulation in a murine model of Acinetobacter baumannii infection. Proceedings of the National Academy of Sciences USA 114:201708747

 

Aron AT, Loehr MO, Bogena J, Chang CJ, (2016) An endoperoxide reactivity-based FRET probe for ratiometric fluorescence imaging of labile iron pools in living cells. J Am Chem Soc 138(43):14338-14346

 

Aron AT, Ramos-Torres KM, Cotruvo JA, Chang CJ, (2015) Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems. Acc Chem Res 48(8):2434-2442

 

Aron AT, Reeves AG, Chang CJ, (2018) Activity-based sensing fluorescent probes for iron in biological systems. Curr Opin Chem Biol 43:113-118

 

Au-Yeung HY, Chan J, Chantarojsiri T, Chang CJ, (2013) Molecular imaging of labile iron(ii) pools in living cells with a turn-on fluorescent probe. J Am Chem Soc 135(40):15165-15173

 
Avila DS, Puntel RL, Aschner M (2013) Manganese in health and disease. In: Sigel H, Sigel RKO, et al. (eds) Sigel A. Book. Manganese in health and disease. Dordrecht, Springer, Netherlands, pp 199–227
 

Baker M, (2010) The whole picture. Nature 463(7283):977-979

 

Bakthavatsalam S, Sarkar A, Rakshit A, Jain S, Kumar A, Datta A, (2015) Tuning macrocycles to design ‘turn-on’ fluorescence probes for manganese(ii) sensing in live cells. Chem Commun 51(13):2605-2608

 

Ballesteros E, Moreno D, Gómez T, Rodríguez T, Rojo J, García-Valverde M, Torroba T, (2009) A new selective chromogenic and turn-on fluorogenic probe for copper(ii) in water-acetonitrile 1:1 solution. Org Lett 11(6):1269-1272

 

Bandmann O, Weiss KH, Kaler SG, (2015) Wilson's disease and other neurological copper disorders. The Lancet Neurology 14(1):103-113

 

Bansagi B, Lewis-Smith D, Pal E, Duff J, Griffin H, Pyle A, Müller JS, Rudas G, Aranyi Z, Lochmüller H, Chinnery PF, Horvath R, (2016) Phenotypic convergence of Menkes and Wilson disease. Neurology Genetics 2(6):e119

 

Bertinato J, Iskandar M, Labbe MR, (2003) Copper deficiency induces the upregulation of the copper chaperone for Cu/Zn superoxide dismutase in weanling male rats. J Nutr 133(1):28-31

 

Bleackley MR, MacGillivray RTA, (2011) Transition metal homeostasis: from yeast to human disease. Biometals 24(5):785-809

 

Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, Knapp S, Xiao K, Campbell SL, Thiele DJ, Counter CM, (2014) Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature 509(7501):492-496

 

Braymer JJ, Lill R, (2017) Iron-sulfur cluster biogenesis and trafficking in mitochondria. The Journal of biological chemistry 292(31):12754-12763

 

Burd C, Cullen PJ, (2014) Retromer: a master conductor of endosome sorting. Cold Spring Harbor Perspectives in Biology 6(2):a016774

 

Cao X, Lin W, Wan W, (2012) Development of a near-infrared fluorescent probe for imaging of endogenous Cu+ in live cells. Chem Commun 48(50):6247-6249

 

Carter KP, Young AM, Palmer AE, (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114(8):4564-4601

 

Chang CJ, (2015) Searching for harmony in transition-metal signaling. Nat Chem Biol 11(10):744-747

 

Chang CJ, James TD, New EJ, Tang BZ, (2020) Activity-based sensing: achieving chemical selectivity through chemical reactivity. Acc Chem Res 53(1):1-1

 

Chen Y, Bai Y, Han Z, He W, Guo Z, (2015) Photoluminescence imaging of Zn 2+ in living systems. Chem Soc Rev 44(14):4517-4546

 

Chen Y, Lam J, Kwok R, Liu B, Tang B, (2019) Aggregation-induced emission: fundamental understanding and future developments. Materials Horizons 6:428-433

 

Chen Y, Zhang W, Cai Y, Kwok RTK, Tang BZ, (2016) AIEgens for dark through-bond energy transfer: design, synthesis, theoretical study and application in ratiometric Hg(2+) sensing. Chemical science 8(3):2047

 

Chen Y, Zhu C, Cen J, Li J, He W, Jiao Y, Guo Z, (2013) A reversible ratiometric sensor for intracellular Cu 2+ imaging: metal coordination-altered FRET in a dual fluorophore hybrid. Chem Commun 49(69):7632-7634

 

Chen Z, Mu X, Han Z, Yang S, Zhang C, Guo Z, Bai Y, He W, (2019) An optical/photoacoustic dual-modality probe: ratiometricin/ex vivo imaging for stimulated H2S upregulation in mice. J Am Chem Soc 141(45):17973-17977

 

Chung CY-S, Posimo JM, Lee S, Tsang T, Davis JM, Brady DC, Chang CJ, (2019) Activity-based ratiometric FRET probe reveals oncogene-driven changes in labile copper pools induced by altered glutathione metabolism. Proceedings of the National Academy of Sciences USA 116(37):18285-18294

 

Chyan W, Zhang D, Lippard S, Radford R, (2014) Reaction-based fluorescent sensor for investigating mobile Zn 2+ in mitochondria of healthy versus cancerous prostate cells. Proc Natl Acad Sci USA 111(1):143-148

 

Conrad M, Angeli JPF, Vandenabeele P, Stockwell BR, (2016) Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discovery 15(5):348-366

 

Costello LC, Feng P, Milon B, Tan M, Franklin RB, (2004) Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer and Prostatic Diseases 7(2):111-117

 

Cotruvo JJA, Aron AT, Ramos-Torres KM, Chang CJ, (2015) Synthetic fluorescent probes for studying copper in biological systems. Chem Soc Rev 44(13):4400-4414

 

Das S, Aich K, Goswami S, Quah CK, Fun H-K, (2016) FRET-based fluorescence ratiometric and colorimetric sensor to discriminate Fe 3+ from Fe 2+. New J Chem 40(7):6414-6420

 

Dixon SJ, Stockwell BR, (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10(1):9-17

 

Dodani SC, Firl A, Chan J, Nam CI, Aron AT, Onak CS, Ramos-Torres KM, Paek J, Webster CM, Feller MB, Chang CJ, (2014) Copper is an endogenous modulator of neural circuit spontaneous activity. Proceedings of the National Academy of Sciences USA 111(46):16280-16285

 

Dong Z, Han Q, Mou Z, Li G, Liu W, (2018) A reversible frequency upconversion probe for real-time intracellular lysosome-pH detection and subcellular imaging. Journal of Materials Chemistry B 6(9):1322-1327

 

Du C, (2019) Diketopyrrolopyrrole-based fluorescence probes for the imaging of lysosomal Zn2+ and identification of prostate cancer in human tissue. Chem Sci 10:5699-5704

 

Eide DJ, (2004) The SLC39 family of metal ion transporters. Pflügers Archiv 447(5):796-800

 

Fahrni CJ, (2013) Synthetic fluorescent probes for monovalent copper. Curr Opin Chem Biol 17(4):656-662

 

Feng H-T, Song S, Chen Y-C, Shen C-H, Zheng Y-S, (2014) Self-assembled tetraphenylethylene macrocycle nanofibrous materials for the visual detection of copper(ii) in water. Journal of Materials Chemistry C 2(13):2353-2359

 

Feng X, Li Y, He X, Liu H, Zhao Z, Kwok RTK, Elsegood MRJ, Lam JWY, Tang BZ, (2018) A substitution-dependent light-up fluorescence probe for selectively detecting Fe3+ ions and its cell imaging application. Adv Func Mater 28(35):1802833

 

Festa RA, Thiele DJ, (2011) Copper: an essential metal in biology. Curr Biol 21(21):R877-R883

 

Friedmann Angeli JP, Krysko DV, Conrad M, (2019) Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer 19(7):405-414

 

Geng J, Liu Y, Li J, Yin G, Huang W, Wang R, Quan Y, (2016) A ratiometric fluorescent probe for ferric ion based on a 2,2'-bithiazole derivative and its biological applications. Sensors and Actuators B: Chemical 222:612-617

 
Goel A, Umar S, Nag P, Sharma A, Kumar L, Shamsuzzama, Hossain Z, Gayen JR, Nazir A (2015) A dual colorimetric-ratiometric fluorescent probe NAP-3 for selective detection and imaging of endogenous labile iron(iii) pools inC. elegans. Chemical Communications 51(24):5001–5004
 

Guo J, Yuan H, Chen Y, Chen Z, Zhao M, Zou L, Liu Y, Liu Z, Zhao Q, Guo Z, He W, (2019) A ratiometric fluorescent sensor for tracking Cu(I) fluctuation in endoplasmic reticulum<styleredit/>. Science China Chemistry 62:465-474

 

Guo Z, Park S, Yoon J, Shin I, (2014) Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev 43(1):16-29

 

Hassannia B, Vandenabeele P, Vanden Berghe T, (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35(6):830-849

 

Heffern MC, Park HM, Au-Yeung HY, Van de Bittner GC, Ackerman CM, Stahl A, Chang CJ, (2016) In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease. Proceedings of the National Academy of Sciences USA 113(50):14219-14224

 

Hirayama T, (2019) Fluorescent probes for the detection of catalytic Fe(II) ion. Free Radical Biol Med 133:38-45

 

Hirayama T, Inden M, Tsuboi H, Niwa M, Uchida Y, Naka Y, Hozumi I, Nagasawa H, (2019) A Golgi-targeting fluorescent probe for labile Fe(ii) to reveal an abnormal cellular iron distribution induced by dysfunction of VPS35. Chemical science 10(5):1514-1521

 

Hirayama T, Miki A, Nagasawa H, (2019) Organelle-specific analysis of labile Fe(ii) during ferroptosis by using a cocktail of various colour organelle-targeted fluorescent probes. Metallomics 11(1):111-117

 

Hirayama T, Okuda K, Nagasawa H, (2013) A highly selective turn-on fluorescent probe for iron(ii) to visualize labile iron in living cells. Chemical science 4(3):1250-1256

 

Hirayama T, Tsuboi H, Niwa M, Miki A, Kadota S, Ikeshita Y, Okuda K, Nagasawa H, (2017) A universal fluorogenic switch for Fe(ii) ion based on N-oxide chemistry permits the visualization of intracellular redox equilibrium shift towards labile iron in hypoxic tumor cells. Chemical science 8(7):4858-4866

 

Jin X, Wu X, Wang B, Xie P, He Y, Zhou H, Yan B, Yang J, Chen W, Zhang X, (2018) A reversible fluorescent probe for Zn2+ and ATP in living cells andin vivo. Sensors and Actuators B: Chemical 261:127-134

 

Jung SH, Kwon K-Y, Jung JH, (2015) A turn-on fluorogenic Zn(ii) chemoprobe based on a terpyridine derivative with aggregation-induced emission (AIE) effects through nanofiber aggregation into spherical aggregates. Chem Commun 51(5):952-955

 

Kelleher SL, McCormick NH, Velasquez V, Lopez V, (2011) Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Advances in Nutrition 2(2):101-111

 

Kim D, Ryu HG, Ahn KH, (2014) Recent development of two-photon fluorescent probes for bioimaging. Org Biomol Chem 12(26):4550-4566

 

Knox HJ, Chan J, (2018) Acoustogenic probes: a new frontier in photoacoustic imaging. Acc Chem Res 51(11):2897-2905

 

Kolanowski JL, Liu F, New EJ, (2018) Fluorescent probes for the simultaneous detection of multiple analytes in biology. Chem Soc Rev 47(1):195-208

 

Kolenko V, Teper E, Kutikov A, Uzzo R, (2013) Zinc and zinc transporters in prostate carcinogenesis. Nature Reviews Urology 10(4):219-226

 

Kozma E, Kele P, (2018) Fluorogenic probes for super-resolution microscopy. Org Biomol Chem 17:215-233

 

Lazarczyk M, Favre M, (2008) Role of Zn2+ ions in host–virus interactions. J Virol 82:11486-11494

 

Lee MH, Lee H, Chang MJ, Kim HS, Kang C, Kim JS, (2016) A fluorescent probe for the Fe3+ ion pool in endoplasmic reticulum in liver cells. Dyes Pigm 130:245-250

 

Li H, Zhang P, Smaga LP, Hoffman RA, Chan J, (2015) Photoacoustic probes for ratiometric imaging of copper(II). J Am Chem Soc 137(50):15628-15631

 

Li J, Chen L, Du L, Li M, (2013) Cage the firefly luciferin! – a strategy for developing bioluminescent probes. Chem Soc Rev 42(2):662-676

 

Liang J, Canary JW, (2010) Discrimination between hard metals with soft ligand donor atoms: an on-fluorescence probe for manganese(II). Angew Chem Int Ed 49(42):7710-7713

 

Lim B, Baek B, Jang K, Lee NK, Lee JH, Lee Y, Kim J, Kang SW, Park J, Kim S, Kang N-W, Hong S, Kim D-D, Kim I, Hwang H, Lee J, (2019) Novel turn-on fluorescent biosensors for selective detection of cellular Fe3+ in lysosomes: thiophene as a selectivity-tuning handle for Fe3+ sensors. Dyes Pigm 169:51-59

 
Liu Y, Su Q, Chen M, Dong Y, Shi Y, Feng W, Wu Z-Y, Li F (2016) Near-infrared upconversion chemodosimeter forin vivo detection of Cu(2+) in Wilson disease. Advanced materials (Deerfield Beach, Fla.) 28(31):6625–6630
 

Liu Z, He W, Guo Z, (2013) Metal coordination in photoluminescent sensing. Chem Soc Rev 42(4):1568-1600

 

Liu Z, Zhang C, Chen Y, Qian F, Bai Y, He W, Guo Z, (2014) In vivo ratiometric Zn2+ imaging in zebrafish larvae using a new visible light excitable fluorescent sensor. Chem Commun 50(10):1253-1255

 

Loas A, Radford RJ, Lippard SJ, (2014) Addition of a second binding site increases the dynamic range but alters the cellular localization of a red fluorescent probe for mobile zinc. Inorg Chem 53(13):6491-6493

 

Long L, Wang N, Han Y, Huang M, Yuan X, Cao S, Gong A, Wang K, (2018) A coumarin-based fluorescent probe for monitoring labile ferrous iron in living systems. Analyst 143(11):2555-2562

 

Maiti S, Aydin Z, Zhang Y, Guo M, (2015) Reaction-based turn-on fluorescent probes with magnetic responses for Fe2+ detection in live cells. Dalton Trans 44(19):8942-8949

 

Mei J, Leung N, Kwok R, Jacky W, Tang B, (2015) Aggregation-induced emission: together we shine, united we soar!. Chem Rev 115(21):11718-11940

 

Müller UC, Deller T, Korte M, (2017) Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 18(5):281-298

 

Nishito Y, Kambe T, (2018) Absorption mechanisms of iron, copper, and zinc: an overview. J Nutr Sci Vitaminol 64(1):1-7

 

Niwa M, Hirayama T, Okuda K, Nagasawa H, (2014) A new class of high-contrast Fe(ii) selective fluorescent probes based on spirocyclized scaffolds for visualization of intracellular labile iron delivered by transferrin. Org Biomol Chem 12(34):6590-6597

 

Niwa M, Hirayama T, Oomoto I, Wang DO, Nagasawa H, (2018) Fe(II) ion release during endocytotic uptake of iron visualized by a membrane-anchoring Fe(II) fluorescent probe. ACS Chem Biol 13(7):1853-1861

 

Palmiter RD, Huang L, (2004) Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflügers Archiv 447(5):744-751

 

Paredes E, Das SR, (2011) Click chemistry for rapid labeling and ligation of RNA. ChemBioChem 12(1):125-131

 

Park S, Kwon N, Lee J, Yoon J, Shin I, (2020) Synthetic ratiometric fluorescent probes for detection of ions. Chem Soc Rev 49(1):143-179

 

Peter V, Kyoung S, Jong Seung K, (2015) The role of copper ions in pathophysiology and fluorescent sensors for the detection thereof. Chem Commun 46(21):5556-5571

 

Prohaska JR, Broderius M, Brokate B, (2003) Metallochaperone for Cu, Zn-superoxide dismutase (CCS) protein but not mRNA is higher in organs from copper-deficient mice and rats. Arch Biochem Biophys 417(2):227-234

 

Qian F, Zhang C, Zhang Y, He W, Gao X, Hu P, Guo Z, (2009) Visible light excitable Zn2+ Fluorescent sensor derived from an intramolecular charge transfer fluorophore and itsin vitro andin vivo application. J Am Chem Soc 131(4):1460-1468

 

Qiu L, Zhu C, Chen H, Hu M, He W, Guo Z, (2014) A turn-on fluorescent Fe3+ sensor derived from an anthracene-bearing bisdiene macrocycle and its intracellular imaging application. Chem Commun 50(35):4631-4634

 

Reinhardt CJ, Chan J, (2018) Development of photoacoustic probes forin vivo molecular imaging. Biochemistry 57(2):194-199

 

Sahoo SK, Sharma D, Bera RK, Crisponi G, Callan JF, (2012) Iron(iii) selective molecular and supramolecular fluorescent probes. Chem Soc Rev 41(21):7195-7227

 

Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH, (2006) Mitoferrin is essential for erythroid iron assimilation. Nature 440(7080):96-100

 

Shi Y, Wang R, Yuan W, Liu Q, Shi M, Feng W, Wu Z, Hu K, Li F, (2018) Easy-to-use colorimetric cyanine probe for the detection of Cu2+ in Wilson’s disease. ACS Appl Mater Interfaces 10(24):20377-20386

 

Shi Z, Tang X, Zhou X, Cheng J, Han Q, Zhou J-A, Wang B, Yang Y, Liu W, Bai D, (2013) A Highly selective fluorescence “turn-on” probe for Cu(II) based on reaction and its imaging in living cells. Inorg Chem 52(21):12668-12673

 

Singh H, Lee HW, Heo CH, Byun JW, Sarkar AR, Kim HM, (2015) A Golgi-localized two-photon probe for imaging zinc ions. Chem Commun 51(60):12099-12102

 

Spangler B, Morgan CW, Fontaine SD, Vander Wal MN, Chang CJ, Wells JA, Renslo AR, (2016) A reactivity-based probe of the intracellular labile ferrous iron pool. Nat Chem Biol 12(9):680-685

 

Sui B, Tang S, Liu T, Kim B, Belfield KD, (2014) Novel BODIPY-based fluorescence turn-on sensor for Fe3+ and its bioimaging application in living cells. ACS Appl Mater Interfaces 6(21):18408-18412

 
Szewczyk B (2013) Zinc homeostasis and neurodegenerative disorders. Frontiers in Aging Neuroscience 5(33)
 

Tabuchi M, Yanatori I, Kawai Y, Kishi F, (2010) Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1. J Cell Sci 123:756-766

 

Theil EC, Goss DJ, (2009) Living with iron (and oxygen): questions and answers about iron homeostasis. Chem Rev 109(10):4568-4579

 

Trusso Sfrazzetto G, Satriano C, Tomaselli GA, Rizzarelli E, (2016) Synthetic fluorescent probes to map metallostasis and intracellular fate of zinc and copper. Coord Chem Rev 311:125-167

 
Valentini S, Cabreiro F, Ackerman D, Alam M, Kunze M, Kay C, Gems D (2012) Manipulation ofin vivo iron levels can alter resistance to oxidative stress without affecting ageing in the nematode C. mechanisms of ageing and development 133: 282–290
 

Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K, (2016) Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 90(1):1-37

 

Wang J, Luo C, Shan C, You Q, Lu J, Elf S, Zhou Y, Wen Y, Vinkenborg JL, Fan J, Kang H, Lin R, Han D, Xie Y, Karpus J, Chen S, Ouyang S, Luan C, Zhang N, Ding H, Merkx M, Liu H, Chen J, Jiang H, He C, (2015) Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nature Chemistry 7(12):968-979

 
Wang S, Sheng Z, Yang Z, Hu D, Long X, Feng G, Liu Y, Yuan Z, Zhang J, Zheng H, Zhang X (2019a) Activatable small-molecule photoacoustic probes that cross the blood-brain barrier for visualization of copper(ii) in mice with Alzheimer's disease. Angewandte Chemie (International ed. in English) 58(36):12415–12419
 

Wang X, Chen F, Zhang J, Sun J, Zhao X, Zhu Y, Wei W, Zhao J, Guo Z, (2019) A ferroptosis-inducing iridium(III) complex. Science China Chemistry. https://doi.org/10.1007/s11426-019-9577-3

 

Wegner SV, Sun F, Hernandez N, He C, (2011) The tightly regulated copper window in yeast. Chem Commun 47(9):2571-2573

 

Wu L, Ding Q, Wang X, Li P, Fan N, Zhou Y, Tong L, Zhang W, Zhang W, Tang B, (2020) Visualization of dynamic changes in labile iron(II) pools in endoplasmic reticulum stress-mediated drug-induced liver injury. Anal Chem 92(1):1245-1251

 
Xue X, Fang H, Chen H, Zhang C, Zhu C, Bai Y, He W, Guo Z (2016) In vivo fluorescence imaging for Cu2+ in live mice by a new NIR fluorescent sensor. Dyes and Pigments 130(116–121
 

Yang H, Han C, Zhu X, Liu Y, Zhang KY, Liu S, Zhao Q, Li F, Huang W, (2016) Upconversion luminescent chemodosimeter based on NIR organic dye for monitoring methylmercury in vivo. Adv Func Mater 26(12):1945-1953

 

Yang L, McRae R, Henary MM, Patel R, Lai B, Vogt S, Fahrni CJ, (2005) Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron X-ray fluorescence microscopy. Proc Natl Acad Sci USA 102(32):11179-11184

 

Yang Y, Zhao Q, Feng W, Li F, (2013) Luminescent chemodosimeters for bioimaging. Chem Rev 113(1):192-270

 

Yao Z, Zhang BS, Prescher JA, (2018) Advances in bioluminescence imaging: new probes from old recipes. Curr Opin Chem Biol 45:148-156

 

Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ, (2006) A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc 128(1):10-11

 

Zhang C, Liu M, Liu S, Yang H, Zhao Q, Liu Z, He W, (2018) Phosphorescence lifetime imaging of labile Zn2+ in mitochondria via a phosphorescent iridium(iii) complex. Inorg Chem 57(17):10625-10632

 

Zhang C, Liu Z, Li Y, He W, Gao X, Guo Z, (2013) In vitro and in vivo imaging application of a 1,8-naphthalimide-derived Zn2+ fluorescent sensor with nuclear envelope penetrability. Chem Commun 49(97):11430-11432

 

Zhang S, Chen T-H, Lee H-M, Bi J, Ghosh A, Fang M, Qian Z, Xie F, Ainsley J, Christov C, Luo F-T, Zhao F, Liu H, (2017) Luminescent probes for sensitive detection of pH changes in live cells through two near-infrared luminescence channels. ACS Sensors 2(7):924-931

 

Zhang X, Chen Y, Cai X, Liu C, Jia P, Li Z, Zhu H, Yu Y, Wang K, Li X, Sheng W, Zhu B, (2020) A highly sensitive rapid-response fluorescent probe for specifically tracking endogenous labile Fe2+ in living cells and zebrafish. Dyes Pigm 174:108065

 

Zheng D, Feeney G, Kille P, Hogstrand C, (2008) Regulation of ZIP and ZnT zinc transporters in zebrafish gill: zinc repression of ZIP10 transcription by an intronic MRE cluster. Physiol Genomics 34:205-214

 

Zhou B, Zhang J-Y, Liu X-S, Chen H-Z, Ai Y-L, Cheng K, Sun R-Y, Zhou D, Han J, Wu Q, (2018) Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res 28(12):1171-1185

 

Zhou L, Zhang X, Wang Q, Lv Y, Mao G, Luo A, Wu Y, Wu Y, Zhang J, Tan W, (2014) Molecular engineering of a tbet-based two-photon fluorescent probe for ratiometric imaging of living cells and tissues. J Am Chem Soc 136(28):9838-9841

 

Zhu C, Wang M, Qiu L, Hao S, Li K, Guo Z, He W, (2018) A mitochondria-targeting fluorescent Fe3+ probe and its application in labile Fe3+ monitoring via imaging and flow cytometry. Dyes Pigm 157:328-333

 

Zhu H, Fan J, Du J, Peng X, (2016) Fluorescent probes for sensing and imaging within specific cellular organelles. Acc Chem Res 49(10):2115-2126

Biophysics Reports
Pages 159-178
Cite this article:
Gao J, Chen Y, Guo Z, et al. Recent Endeavors on Molecular Imaging for Mapping Metals in Biology. Biophysics Reports, 2020, 6(5): 159-178. https://doi.org/10.1007/s41048-020-00118-7

490

Views

12

Downloads

6

Crossref

0

Scopus

1

CSCD

Altmetrics

Received: 02 June 2020
Accepted: 02 August 2020
Published: 04 October 2020
© The Author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return