AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Edge-preserving image decomposition via joint weighted least squares

Pan Shao1Shouhong Ding1Lizhuang Ma1( )Yunsheng Wu2Yongjian Wu2
Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Tencent Inc., China.
Show Author Information

Abstract

Recent years have witnessed the emergence of image decomposition techniques which effectively separate an image into a piecewise smooth base layer and several residual detail layers. However, the intricacy of detail patterns in some cases may result in side-effects including remnant textures, wrongly-smoothed edges, and distorted appearance. We introduce a new way to construct an edge-preserving image decomposition with properties of detail smoothing, edge retention, and shape fitting. Our method has three main steps: suppressing high-contrast details via a windowed variation similarity measure, detecting salient edges to produce an edge-guided image, and fitting the original shape using a weighted least squares framework. Experimental results indicate that the proposed approach can appropriately smooth non-edge regions even when textures and structures are similar in scale. The effectiveness of our approach is demonstrated in the contexts of detail manipulation, HDR tone mapping, and image abstraction.

References

[1]
Eisemann, E.; Durand, F. Flash photography enhancement via intrinsic relighting. ACM Transactions on Graphics Vol. 23, No. 3, 673-678, 2004.
[2]
Petschnigg, G.; Szeliski, R.; Agrawala, M.; Cohen, M.; Hoppe, H.; Toyama, K. Digital photography with flash and no-flash image pairs. ACM Transactions on Graphics Vol. 23, No. 3, 664-672, 2004.
[3]
Bae, S.; Paris, S.; Durand, F. Two-scale tone management for photographic look. ACM Transactions on Graphics Vol. 25, No. 3, 637-645, 2006.
[4]
Durand, F.; Dorsey, J. Fast bilateral filtering for the display of high-dynamic-range images. ACM Transactions on Graphics Vol. 21, No. 3, 257-266, 2002.
[5]
Khan, E. A.; Reinhard, E.; Fleming, R. W.; Bülthoff, H. H. Image-based material editing. ACM Transactions on Graphics Vol. 25, No. 3, 654-663, 2006.
[6]
Huang, S.-S.; Zhang, G.-X.; Lai, Y.-K.; Kopf, J.; Cohen-Or, D.; Hu, S.-M. Parametric meta-filter modeling from a single example pair. The Visual Computer Vol. 30, Nos. 6–8, 673-684, 2014
[7]
Burt, P. J.; Adelson, E. H. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications Vol. 31, No. 4, 532-540, 1983.
[8]
Black, M. J.; Sapiro, G.; Marimont, D. H.; Heeger, D. Robust anisotropic diffusion. IEEE Transactions on Image Processing Vol. 7, No. 3, 421-432, 1998.
[9]
Lagendijk, R. L.; Biemond, J.; Boekee, D. E. Regularized iterative image restoration with ringing reduction. IEEE Transactions on Acoustics, Speech and Signal Processing Vol. 36, No. 12, 1874-1888, 1988.
[10]
Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 12, No. 7, 629-639, 1990.
[11]
Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, 839-846, 1998.
[12]
Bhat, P.; Zitnick, C. L.; Cohen, M.; Curless, B. GradientShop: A gradient-domain optimization framework for image and video filtering. ACM Transactions on Graphics Vol. 29, No. 2, Article No. 10, 2010.
[13]
Cheng, X.; Zeng, M.; Liu, X. Feature-preserving filtering withL0 gradient minimization. Computers & Graphics Vol. 38, 150-157, 2014.
[14]
Farbman, Z.; Fattal, R.; Lischinski, D.; Szeliski, R. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Transactions on Graphics Vol. 27, No. 3, Article No. 67, 2008.
[15]
Paris, S.; Hasinoff, S. W.; Kautz, J. Local Laplacian filters: Edge-aware image processing with a Laplacian pyramid. ACM Transactions on Graphics Vol. 30, No. 4, Article No. 68, 2011.
[16]
Li, X.-Y.; Gu, Y.; Hu, S.-M.; Martin, R. R. Mixed-domain edge-aware image manipulation. IEEE Transactions on Image Processing Vol. 22, No. 5, 1915-1925, 2013.
[17]
Subr, K.; Soler, C.; Durand, F. Edge-preserving multiscale image decomposition based on local extrema. ACM Transactions on Graphics Vol. 28, No. 5, Article No. 147, 2009.
[18]
Xu, L.; Yan, Q.; Xia, Y.; Jia, J. Structure extraction from texture via relative total variation. ACM Transactions on Graphics Vol. 31, No. 6, Article No. 139, 2012.
[19]
Gastal, E. S. L.; Oliveira, M. M. Domain transform for edge-aware image and video processing. ACM Transactions on Graphics Vol. 30, No. 4, Article No. 69, 2011.
[20]
Xu, L.; Lu, C.; Xu, Y.; Jia, J. Image smoothing via L0 gradient minimization. ACM Transactions on Graphics Vol. 30, No. 6, Article No. 174, 2011.
[21]
Choudhury, P.; Tumblin, J. The trilateral filter for high contrast images and meshes. In: ACM SIGGRAPH 2005 Courses, Article No. 5, 2005
[22]
Su, Z.; Luo, X.; Deng, Z.; Liang, Y.; Ji, Z. Edge-preserving texture suppression filter based on joint filtering schemes. IEEE Transactions on Multimedia Vol. 15, No. 3, 535-548, 2013.
[23]
Chen, J.; Paris, S.and; Durand, F. Real-time edge-aware image processing with the bilateral grid. ACM Transactions on Graphics Vol. 26, No. 3, Article No. 103, 2007.
[24]
Winnemöller, H.; Olsen, S. C.; Gooch, B. Real-time video abstraction. ACM Transactions on Graphics Vol. 25, No. 3, 1221-1226, 2006.
[25]
Karacan, L.; Erdem, E.; Erdem, A. Structure-preserving image smoothing via region covariances. ACM Transactions on Graphics Vol. 32, No. 6, Article No. 176, 2013.
[26]
Su, Z.; Luo, X.; Artusi, A. A novel image decomposition approach and its applications. The Visual Computer Vol. 29, No. 10, 1011-1023, 2013.
[27]
Aujol, J.-F.; Gilboa, G.; Chan, T.; Osher, S. Structure-texture image decomposition—modeling, algorithms, and parameter selection. International Journal of Computer Vision Vol. 67, No. 1, 111-136, 2006.
[28]
Meyer, Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures. Boston, MA, USA: American Mathematical Society, 2001.
[29]
Rudin, L. I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena Vol. 60, Nos. 1–4, 259-268, 1992.
[30]
Yin, W.; Goldfarb, D.; Osher, S. Image cartoon-texture decomposition and feature selection using the total variation regularized L1 functional. In: Proceedings of the Third international conference on Variational, Geometric, and Level Set Methods in Computer Vision, 73-84, 2005.
[31]
Zhang, Q.; Shen, X.; Xu, L.; Jia, J. Rolling guidance filter. In: Computer Vision–ECCV 2014. Lecture Notes in Computer Science Volume 8691. Fleet, D.; Pajdla, T.; Schiele, B.; Tuytelaars, T. Eds. Switzerland: Springer International Publishing, 815-830, 2014.
[32]
He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 35, No. 6, 1397-1409, 2013.
[33]
Li, Y.; Sharan, L.; Adelson, E. H. Compressing and companding high dynamic range images with subband architectures. ACM Transactions on Graphics Vol. 24, No. 3, 836-844, 2005.
[34]
Tumblin, J.; Turk, G. LCIS: A boundary hierarchy for detail-preserving contrast reduction. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, 83-90, 1999.
Computational Visual Media
Pages 37-47
Cite this article:
Shao P, Ding S, Ma L, et al. Edge-preserving image decomposition via joint weighted least squares. Computational Visual Media, 2015, 1(1): 37-47. https://doi.org/10.1007/s41095-015-0006-4

879

Views

22

Downloads

12

Crossref

N/A

Web of Science

14

Scopus

0

CSCD

Altmetrics

Revised: 15 November 2014
Accepted: 02 February 2015
Published: 08 August 2015
© The Author(s) 2015

This article is published with open access at Springerlink.com

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Return