PDF (4.1 MB)
Collect
Submit Manuscript
Show Outline
Figures (8)

Tables (4)
Table 3
Table 1
Table 2
Table 4
Research Article | Open Access

VoxLink—Combining sparse volumetric data and geometry for efficient rendering

VISUS, University of Stuttgart, 70569 Stuttgart, Germany.
Immersive Visualization Group, Linköping University, 601 74 Norrköping, Sweden.
Show Author Information

Abstract

Processing and visualizing large scale volumetric and geometric datasets is mission critical in an increasing number of applications in academic research as well as in commercial enterprise. Often the datasets are, or can be processed to become, sparse. In this paper, we present VoxLink, a novel approach to render sparse volume data in a memory-efficient manner enabling interactive rendering on common, off-the-shelf graphics hardware. Our approach utilizes current GPU architectures for voxelizing, storing, and visualizing such datasets. It is based on the idea of per-pixel linked lists (ppLL), an A-buffer implementation for order-independent transparency rendering. The method supports voxelization and rendering of dense semi-transparent geometry, sparse volume data, and implicit surface representations with a unified data structure. The proposed data structure also enables efficient simulation of global lighting effects such as reflection, refraction, and shadow ray evaluation.

References

[1]
Yang, J. C.; Hensley, J.; Grün, H.; Thibieroz, N. Real-time concurrent linked list construction on the GPU. Computer Graphics Forum Vol. 29, No. 4, 1297-1304, 2010.
[2]
Falk, M.; Krone, M.; Ertl, T. Atomistic visualization of mesoscopic whole-cell simulations using ray-casted instancing. Computer Graphics Forum Vol. 32, No. 8, 195-206, 2013.
[3]
Everitt, C. Interactive order-independent transparency. Technical Report. NVIDIA Corporation, 2001
[4]
Carpenter, L. The A-buffer, an antialiased hidden surface method. In: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, 103-108, 1984.
[5]
Lindholm, S.; Falk, M.; Sundén, E.; Bock, A.; Ynnerman, A.; Ropinski, T. Hybrid data visualization based on depth complexity histogram analysis. Computer Graphics Forum Vol. 34, No. 1, 74-85, 2014.
[6]
Kauker, D.; Krone, M.; Panagiotidis, A.; Reina, G.; Ertl, T. Rendering molecular surfaces using order-independent transparency. In: Proceedings of the 13th Eurographics Symposium on Parallel Graphics and Visualization, 33-40, 2013.
[7]
Kauker, D.; Krone, M.; Panagiotidis, A.; Reina, G.; Ertl, T. Evaluation of per-pixel linked lists for distributed rendering and comparative analysis. Computing and Visualization in Science Vol. 15, No. 3, 111-121, 2012.
[8]
Kaufman, A.; Shimony, E. 3D scan-conversion algorithms for voxel-based graphics. In: Proceedings of the 1986 Workshop on Interactive 3D Graphics, 45-75, 1987.
[9]
Yagel, R.; Cohen, D.; Kaufman, A. Discrete ray tracing. IEEE Computer Graphics and Applications Vol. 12, No. 5, 19-28, 1992.
[10]
Karabassi, E.-A.; Papaioannou, G.; Theoharis, T. A fast depth-buffer-based voxelization algorithm. Journal of Graphics Tools Vol. 4, No. 4, 5-10, 1999.
[11]
Liao, D.; Fang, S. Fast CSG voxelization by frame buffer pixel mapping. In: Proceedings of IEEE Symposium on Volume Visualization, 43-48, 2000.
[12]
Eisemann, E.; Décoret, X. Single-pass GPU solid voxelization for real-time applications. In: Proceedings of Graphics Interface, 73-80, 2008.
[13]
Crassin, C. GigaVoxels: A voxel-based rendering pipeline for efficient exploration of large and detailed scenes. Ph.D. Thesis. Universite de Grenoble, 2011.
[14]
Kämpe, V.; Sintorn, E.; Assarsson, U. High resolution sparse voxel DAGs. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 101, 2013.
[15]
Drebin, R. A.; Carpenter, L.; Hanrahan, P. Volume rendering. In: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, 65-74, 1988.
[16]
Levoy, M. Display of surfaces from volume data. IEEE Computer Graphics and Applications Vol. 8, No. 3, 29-37, 1988.
[17]
Sabella, P. A rendering algorithm for visualizing 3D scalar fields. In: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, 51-58, 1988.
[18]
Stegmaier, S.; Strengert, M.; Klein, T.; Ertl, T. A simple and flexible volume rendering framework for graphics-hardware-based raycasting. In: Proceedings of the 4th Eurographics/IEEE VGTC Conference on Volume Graphics, 187-195, 2005.
[19]
Museth, K. VDB: High-resolution sparse volumes with dynamic topology. ACM Transactions on Graphics Vol. 32, No. 3, Article No. 27, 2013.
[20]
Teitzel, C.; Hopf, M.; Grosso, R.; Ertl, T. Volume visualization on sparse grids. Computing and Visualization in Science Vol. 2, No. 1, 47-59, 1999.
[21]
Kähler, R.; Simon, M.; Hege, H.-C. Interactive volume rendering of large sparse datasets using adaptive mesh refinement hierarchies. IEEE Transactions on Visualization and Computer Graphics Vol. 9, No. 3, 341-351, 2003.
[22]
Gobbetti, E.; Marton, F.; Guitián, J. A. I. A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets. The Visual Computer Vol. 24, No. 7, 797-806, 2008.
[23]
Rodríguez, M. B.; Gobbetti, E.; Guitián, J. A. I.; Makhinya, M.; Marton, F.; Pajarola, R.; Suter, S. K. State-of-the-art in compressed GPU-based direct volume rendering. Computer Graphics Forum Vol. 33, No. 6, 77-100, 2014.
[24]
Beyer, J.; Hadwiger, M.; Pfister, H. A survey of GPU-based large-scale volume visualization. In: Proceedings of Eurographics Conference on Visualization, 2014. Available at http://vcg.seas.harvard.edu/files/pfister/files/paper107_camera_ready.pdf?m=1397512314.
[25]
Koza, Z.; Matyka, M.; Szkoda, S.; Miroslaw, L. Compressed multirow storage format for sparse matrices on graphics processing units. SIAM Journal on Scientific Computing Vol. 36, No. 2, C219-C239, 2014.
[26]
Nießner, M.; Schäfer, H.; Stamminger, M. Fast indirect illumination using layered depth images. The Visual Computer Vol. 26, No. 6, 679-686, 2010.
[27]
Shade, J.; Gortler, S.; He, L.-w.; Szeliski, R. Layered depth images. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, 231-242, 1998.
[28]
Frey, S.; Sadlo, F.; Ertl, T. Explorable volumetric depth images from raycasting. In: Proceedings of the 26th Conference on Graphics, Patterns and Images, 123-130, 2013.
[29]
Bürger, K.; Krüger, J.; Westermann, R. Sample-based surface coloring. IEEE Transactions on Visualization and Computer Graphics Vol. 16, No. 5, 763-776, 2010.
[30]
Reichl, F.; Chajdas, M. G.; Bürger, K.; Westermann, R. Hybrid sample-based surface rendering. In: Proceedings of Vision, Modelling and Visualization, 47-54, 2012.
[31]
Reina, G. Visualization of uncorrelated point data. Ph.D. Thesis. Visualization Research Center, University of Stuttgart, 2008.
[32]
Kitanidis, P. K. Introduction to Geostatistics: Applications in Hydrogeology. Cambridge University Press, 1997.
[33]
Nowak, W.; Litvinenko, A. Kriging and spatial design accelerated by orders of magnitude: Combining low-rank covariance approximations with FFT-techniques. Mathematical Geosciences Vol. 45, No. 4, 411-435, 2013.
Computational Visual Media
Pages 45-56
Cite this article:
Kauker D, Falk M, Reina G, et al. VoxLink—Combining sparse volumetric data and geometry for efficient rendering. Computational Visual Media, 2016, 2(1): 45-56. https://doi.org/10.1007/s41095-016-0034-8
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return