PDF (10.7 MB)
Collect
Submit Manuscript
Show Outline
Figures (6)

Research Article | Open Access

3D modeling and motion parallax for improved videoconferencing

TNList, Tsinghua University, Beijing 100084, China.
School of Computer Science & Informatics, Cardiff University, UK.
Cardiff School of Art & Design, Cardiff Metropolitan University, UK.
Show Author Information

Abstract

We consider a face-to-face videoconferencing system that uses a Kinect camera at each end of the link for 3D modeling and an ordinary 2D display for output. The Kinect camera allows a 3D model of each participant to be transmitted; the (assumed static) background is sent separately. Furthermore, the Kinect tracks the receiver’s head, allowing our system to render a view of the sender depending on the receiver’s viewpoint. The resulting motion parallax gives the receivers a strong impression of 3D viewing as they move, yet the system only needs an ordinary 2D display. This is cheaper than a full 3D system, and avoids disadvantages such as the need to wear shutter glasses, VR headsets, or to sit in a particular position required by an autostereo display. Perceptual studies show that users experience a greater sensation of depth with our system compared to a typical 2D videoconferencing system.

References

[1]
Rosenthal, A. H. Two-way television communication unit. US Patent 2420198, 1947.
[2]
Okada, K.-I.; Maeda, F.; Ichikawaa, Y.; Matsushita, Y. Multiparty videoconferencing at virtual social distance: MAJIC design. In: Proceedings of ACM Conference on Computer Supported Cooperative Work, 385-393, 1994.
[3]
Sellen, A.; Buxton, B.; Arnott, J. Using spatial cues to improve videoconferencing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 651-652, 1992.
[4]
Tang, J. C.; Minneman, S. VideoWhiteboard: Video shadows to support remote collaboration. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 315-322, 1991.
[5]
Vertegaal, R. The GAZE groupware system: Mediating joint attention in multiparty communication and collaboration. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 294-301, 1999.
[6]
Vertegaal, R.; Ding, Y. Explaining effects of eye gaze on mediated group conversations: Amount or synchronization? In: Proceedings of ACM Conference on Computer Supported Cooperative Work, 41-48, 2002.
[7]
Pirenne, M. H. Optics, Painting and Photography. Cambridge, UK: Cambridge University Press, 1970.
[8]
Solso, R. L. Cognition and the Visual Arts. Cambridge, MA, USA: MIT Press, 1996.
[9]
Pepperell, R.; Haertel, M. Do artists use linear perspective to depict visual space? Perception Vol. 43, No. 5, 395-416, 2014.
[10]
Baldwin, J.; Burleigh, A.; Pepperell, R. Comparing artistic and geometrical perspective depictions of space in the visual field. i-Perception Vol. 5, No. 6, 536-547, 2014.
[11]
Kemp, M. The Science of Art: Optical Themes in Western Art from Brunelleschi to Seurat. New Haven, CT, USA: Yale University Press, 1990.
[12]
Kingslake, R. Optics in Photography. Bellingham, WA, USA: SPIE Publications, 1992.
[13]
Ogle, K. N. Research in Binocular Vision, 2nd edn. New York: Hafner Publishing Company, 1964.
[14]
Harrison, C.; Hudson, S. E. Pseudo-3D video conferencing with a generic webcam. In: Proceedings of the 10th IEEE International Symposium on Multimedia, 236-241, 2008.
[15]
Zhang, C.; Yin, Z.; Florencio, D. Improving depth perception with motion parallax and its application in teleconferencing. In: Proceedings of IEEE International Workshop on Multimedia Signal Processing, 1-6, 2009.
[16]
Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli, P.; Shotton, J.; Hodges, S.; Freeman, D.; Davison, A.; Fitzgibbon, A. KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, 559-568, 2011.
[17]
Newcombe, R. A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A. J.; Kohli, P.; Shotton, J.; Hodges, S.; Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and tracking. In: Proceedings of the 10th IEEE International Symposium on Mixed and Augmented Reality, 127-136, 2011.
[18]
Kim, K.; Bolton, J.; Girouard, A.; Cooperstock, J.; Vertegaal, R. TeleHuman: Effects of 3D perspective on gaze and pose estimation with a life-size cylindrical telepresence pod. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2531-2540, 2012.
[19]
Lee, J. C. Head tracking for desktop VR displays using the Wii remote. Available at http://johnnylee.net/ projects/wii/.
[20]
iPhone User Guide For iOS 8.1 Software. Apple Inc., 2014.
[21]
Levin, A.; Lischinski, D.; Weiss, Y. A closed form solution to natural image matting. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 30, No. 2, 228-242, 2008.
[22]
Rydfalk, M. CANDIDE, a parameterized face. Technical Report LiTH-ISY-I-866. Linköping University, 1987.
[23]
Welsh, B. Model-based coding of images. Ph.D. Thesis. British Telecom Research Lab, 1991.
[24]
Ahlberg, J. CANDIDE-3—An updated parameterised face. Technical Report LiTH-ISY-R-2326. Linköping University, 2001.
[25]
Rusinkiewicz, S.; Hall-Holt, O.; Levoy, M. Real-time 3D model acquisition. ACM Transactions on Graphics Vol. 21, No. 3, 438-446, 2002.
[26]
3dMD Static Systems. Available at http://www.3dmd. com/3dMD-systems/.
[27]
Chen, J.; Bautembach, D.; Izadi, S. Scalable real-time volumetric surface reconstruction. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 113, 2013.
[28]
Wexler, Y.; Shechtman, E.; Irani, M. Space-time completion of video. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 29, No. 3, 463-476, 2007.
[29]
Chen, T.; Zhu, Z.; Shamir, A.; Hu, S.-M.; Cohen-Or, D. 3-Sweep: Extracting editable objects from a single photo. ACM Transactions on Graphics Vol. 32, No. 6, Article No. 195, 2013.
[30]
Gal, R.; Sorkine, O.; Mitra, N. J.; Cohen-Or, D. iWIRES: An analyze-and-edit approach to shape manipulation. ACM Transactions on Graphics Vol. 28, No. 3, Article No. 33, 2009.
[31]
Schulz, A.; Shamir, A.; Levin, D. I. W.; Sitthi-amorn, P.; Matusik, W. Design and fabrication by example. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 62, 2014.
[32]
Zheng, Y.; Fu, H.; Cohen-Or, D.; Au, O. K.-C.; Tai, C.-L. Component-wise controllers for structure-preserving shape manipulation. Computer Graphics Forum Vol. 30, No. 2, 563-572, 2011.
Computational Visual Media
Pages 131-142
Cite this article:
Zhu Z, Martin RR, Pepperell R, et al. 3D modeling and motion parallax for improved videoconferencing. Computational Visual Media, 2016, 2(2): 131-142. https://doi.org/10.1007/s41095-016-0038-4
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return