AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Learning multi-kernel multi-view canonical correlations for image recognition

Department of Computer Science, College of Information Engineering, Yangzhou University, Yangzhou 225127, China.
Department of Computer Science, Jiangnan University, Wuxi 214122, China.
School of Computer Science, Nanjing University of Science and Technology, Nanjing 210094, China.
School of Information Technology and Electrical Engineering, the University of Queensland, Brisbane QLD 4072, Australia.
Show Author Information

Abstract

In this paper, we propose a multi-kernel multi-view canonical correlations (M 2CCs) framework for subspace learning. In the proposed framework, the input data of each original view are mapped into multiple higher dimensional feature spaces by multiple nonlinear mappings determined by different kernels. This makes M 2CC can discover multiple kinds of useful information of each original view in the feature spaces. With the framework, we further provide a specific multi-view feature learning method based on direct summation kernel strategy and its regularized version. The experimental results in visual recognition tasks demonstrate the effectiveness and robustness of the proposed method.

References

[1]
Horst, P. Relations among m sets of measures. Psychometrika Vol. 26, No. 2, 129-149, 1961.
[2]
Kettenring, J. R. Canonical analysis of several sets of variables. Biometrika Vol. 58, No. 3, 433-451, 1971.
[3]
Li, Y. O.; Adali, T.; Wang, W.; Calhoun, V. D. Joint blind source separation by multiset canonical correlation analysis. IEEE Transactions on Signal Processing Vol. 57, No. 10, 3918-3929, 2009.
[4]
Correa, N. M.; Eichele, T.; Adalı, T.; Li, Y.-O.; Calhoun, V. D. Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI. NeuroImage Vol. 50, No. 4, 1438-1445, 2010.
[5]
Li, Y.-O.; Eichele, T.; Calhoun, V. D.; Adali, T. Group study of simulated driving fMRI data by multiset canonical correlation analysis. Journal of Signal Processing Systems Vol. 68, No. 1, 31-48, 2012.
[6]
Nielsen, A. A. Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data. IEEE Transactions on Image Processing Vol. 11, No. 3, 293-305, 2002.
[7]
Thompson, B.; Cartmill, J.; Azimi-Sadjadi, M. R.; Schock, S. G. A multichannel canonical correlation analysis feature extraction with application to buried underwater target classification. In: Proceedings of International Joint Conference on Neural Networks, 4413-4420, 2006.
[8]
Bach, F. R.; Jordan, M. I. Kernel independent component analysis. The Journal of Machine Learning Research Vol. 3, 1-48, 2003.
[9]
Yu, S.; De Moor, B.; Moreau, Y. Learning with heterogenous data sets by weighted multiple kernel canonical correlation analysis. In: Proceedings of IEEE Workshop on Machine Learning for Signal Processing, 81-86, 2007.
[10]
Lanckriet, G. R. G.; Cristianini, N.; Bartlett, P.; Ghaoui, L. E.; Jordan, M. I. Learning the kernel matrix with semidefinite programming. The Journal of Machine Learning Research Vol. 5, 27-72, 2004.
[11]
Sonnenburg, S.; Rätsch, G.; Schäfer, C.; Schölkopf, B. Large scale multiple kernel learning. The Journal of Machine Learning Research Vol. 7, 1531-1565, 2006.
[12]
Rupnik, J.; Shawe-Taylor, J. Multi-view canonical correlation analysis. In: Proceedings of Conference on Data Mining and Data Warehouses, 2010. Available at http://ailab.ijs.si/dunja/SiKDD2010/Papers/Rupnik_Final.pdf.
[13]
Hardoon, D. R.; Szedmak, S. R.; Shawe-Taylor, J. R. Canonical correlation analysis: An overview with application to learning methods. Neural Computation Vol. 16, No. 12, 2639-2664, 2004.
[14]
Chapelle, O.; Vapnik, V.; Bousquet, O.; Mukherjee, S. Choosing multiple parameters for support vector machines. Machine Learning Vol. 46, Nos. 1-3, 131-159, 2002.
[15]
Wang, Z.; Chen, S.; Sun, T. MultiK-MHKS: A novel multiple kernel learning algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 30, No. 2, 348-353, 2008.
[16]
Rakotomamonjy, A.; Bach, F.; Canu, S.; Grandvalet, Y. More efficiency in multiple kernel learning. In: Proceedings of the 24th International Conference on Machine Learning, 775-782, 2007.
[17]
Xu, X.; Tsang, I. W.; Xu, D. Soft margin multiple kernel learning. IEEE Transactions on Neural Networks and Learning Systems Vol. 24, No. 5, 749-761, 2013.
[18]
Kim, S.-J.; Magnani, A.; Boyd, S. Optimal kernel selection in kernel fisher discriminant analysis. In: Proceedings of the 23rd International Conference on Machine Learning, 465-472, 2006.
[19]
Yan, F.; Kittler, J.; Mikolajczyk, K.; Tahir, A. Non-sparse multiple kernel fisher discriminant analysis. The Journal of Machine Learning Research Vol. 13, No. 1, 607-642, 2012.
[20]
Lin, Y. Y.; Liu, T. L.; Fuh, C. S. Multiple kernel learning for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 33, No. 6, 1147-1160, 2011.
[21]
Yuan, Y.-H.; Shen, X.-B.; Xiao, Z.-Y.; Yang, J.-L.; Ge, H.-W.; Sun, Q.-S. Multiview correlation feature learning with multiple kernels. In: Lecture Notes in Computer Science, Vol. 9243. He, X.; Gao, X.; Zhang, Y. et al. Eds. Springer International Publishing, 518-528, 2015.
[22]
Kan, M.; Shan, S.; Zhang, H.; Lao, S.; Chen, X. Multi-view discriminant analysis. In: Lecture Notes in Computer Science, Vol. 7572. Fitzgibbon, A.; Lazebnik, S.; Perona, P.; Sato, Y.; Schmid, C. Eds. Springer Berlin Heidelberg, 808-821, 2012.
[23]
Schölkopf, B.; Smola, A.; Müller, K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation Vol. 10, No. 5, 1299-1319, 1998.
[24]
Chu, M. T.; Watterson, J. L. On a multivariate eigenvalue problem, part I: Algebraic theory and a power method. SIAM Journal on Scientific Computing Vol. 14, No. 5, 1089-1106, 1993.
[25]
Yuan, Y.-H.; Sun, Q.-S. Fractional-order embedding multiset canonical correlations with applications to multi-feature fusion and recognition. Neurocomputing Vol. 122, 229-238, 2013.
[26]
Yuan, Y.-H.; Sun, Q.-S. Graph regularized multiset canonical correlations with applications to joint feature extraction. Pattern Recognition Vol. 47, No. 12, 3907-3919, 2014.
[27]
Yuan, Y.-H.; Sun, Q.-S. Multiset canonical correlations using globality preserving projections with applications to feature extraction and recognition. IEEE Transactions on Neural Networks and Learning Systems Vol. 25, No. 6, 1131-1146, 2014.
[28]
Dai, D. Q.; Yuen, P. C. Face recognition by regularized discriminant analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) Vol. 37, No. 4, 1080-1085, 2007.
Computational Visual Media
Pages 153-162
Cite this article:
Yuan Y-H, Li Y, Liu J, et al. Learning multi-kernel multi-view canonical correlations for image recognition. Computational Visual Media, 2016, 2(2): 153-162. https://doi.org/10.1007/s41095-016-0044-6

880

Views

38

Downloads

10

Crossref

N/A

Web of Science

11

Scopus

0

CSCD

Altmetrics

Revised: 01 December 2015
Accepted: 08 February 2016
Published: 12 April 2016
© The Author(s) 2016

This article is published with open access at Springerlink.com

The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www. editorialmanager.com/cvmj.

Return