Abstract
We consider the problem of learning a representation of both spatial relations and dependencies between objects for indoor scene design. We propose a novel knowledge graph framework based on the entity-relation model for representation of facts in indoor scene design, and further develop a weakly-supervised algorithm for extracting the knowledge graph representation from a small dataset using both structure and parameter learning. The proposed framework is flexible, transferable, and readable. We present a variety of computer-aided indoor scene design applications using this representation, to show the usefulness and robustness of the proposed framework.