AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Knowledge graph construction with structure and parameter learning for indoor scene design

TNList, Department of Computer Science, Tsinghua University, Beijing 100084, China.
School of Computer Science and Informatics, Cardiff University, Cardiff, CF24 3AA, UK.
Show Author Information

Abstract

We consider the problem of learning a representation of both spatial relations and dependencies between objects for indoor scene design. We propose a novel knowledge graph framework based on the entity-relation model for representation of facts in indoor scene design, and further develop a weakly-supervised algorithm for extracting the knowledge graph representation from a small dataset using both structure and parameter learning. The proposed framework is flexible, transferable, and readable. We present a variety of computer-aided indoor scene design applications using this representation, to show the usefulness and robustness of the proposed framework.

References

[2]
SketchUp. Available at https://www.sketchup.com/.
[3]
ARCHICAD. Available at http://www.graphisoft.com/archicad/.
[4]
Fisher, M.; Hanrahan, P. Context-based search for 3D models. ACM Transactions on Graphics Vol. 29, No. 6, Article No. 182, 2010.
[5]
Yeh, Y.-T.; Yang, L.; Watson, M.; Goodman, N. D.; Hanrahan, P. Synthesizing open worlds with constraints using locally annealed reversible jump MCMC. ACM Transactions on Graphics Vol. 31, No. 4, Article No. 56, 2012.
[6]
Dalton, J.; Dietz, L.; Allan, J. Entity query feature expansion using knowledge base links. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, 365-374, 2014.
[7]
Li, F.; Dong, X. L.; Langen, A.; Li, Y. Knowledge verification for long-tail verticals. Proceedings of the VLDB Endowment Vol. 10, No. 11, 1370-1381, 2017.
[8]
Zhu, X.; Anguelov, D.; Ramanan, D. Capturing long-tail distributions of object subcategories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 915-922, 2014.
[9]
Savva, M.; Chang, A. X.; Agrawala, M. Scenesuggest: Context-driven 3D scene design. arXiv preprint arXiv:1703.00061, 2017.
[10]
Yu, L. F.; Yeung, S.-K.; Terzopoulos, D. The clutterpalette: An interactive tool for detailing indoor scenes. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 2, 1138-1148, 2016.
[11]
Fisher, M.; Ritchie, D.; Savva, M.; Funkhouser, T.; Hanrahan, P. Example-based synthesis of 3D object arrangements. ACM Transactions on Graphics Vol. 31, No. 6, Article No. 135, 2012.
[12]
Xu, K.; Chen, K.; Fu, H.; Sun, W.-L.; Hu, S.-M. Sketch2Scene: Sketch-based co-retrieval and co-placement of 3D models. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 123, 2013.
[13]
Chang, A. X.; Eric, M.; Savva, M.; Manning, C. D. SceneSeer: 3D scene design with natural language. arXiv preprint arXiv:1703.00050, 2017.
[14]
Chen, K.; Lai, Y.-K.; Hu, S.-M. 3D indoor scene modeling from RGB-D data: a survey. Computational Visual Media Vol. 1, No. 4, 267-278, 2015.
[15]
Mihalcea, R.; Radev, D. Graph-based Natural Language Processing and Information Retrieval. Cambridge University Press, 2011.
[16]
Yao, X.; Van Durme, B. Information extraction over structured data: Question answering with freebase. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 956-966, 2014.
[17]
Socher, R.; Chen, D.; Manning, C. D.; Ng, A. Reasoning with neural tensor networks for knowledge base completion. In: Proceedings of the Advances in Neural Information Processing Systems 26, 926-934, 2013.
[18]
Marino, K.; Salakhutdinov, R.; Gupta, A. The more you know: Using knowledge graphs for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2673-2681, 2017.
[19]
Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D.; Mendes, P. N.; Hellmann, S.; Morsey, M.; van Kleef, P.; Auer, S.; Bizer, C. DBpedia—A large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web Vol. 6, No. 2, 167-195, 2015.
[20]
Chang, A. X.; Savva, M.; Manning, C. D. Learning spatial knowledge for text to 3D scene generation. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2028-2038, 2014.
[21]
Dong, X.; Gabrilovich, E.; Heitz, G.; Horn, W.; Lao, N.; Murphy, K.; Strohmann, T.; Sun, S.; Zhang, W. Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 601-610, 2014.
[22]
Hoffart, J.; Suchanek, F. M.; Berberich, K.; Lewis-Kelham, E.; de Melo, G.; Weikum, G. YAGO2: Exploring and querying world knowledge in time, space, context, and many languages. In: Proceedings of the 20th International Conference Companion on World Wide Web, 229-232, 2011.
[23]
Chang, A. X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H.; Xiao, J.; Yi, L.; Yu, F. ShapeNet: An information-rich 3D model repository. arXiv preprint arXiv:1512.03012, 2015.
[24]
Miller. G. A. WordNet: A lexical database for English. Communications of the ACM Vol. 38, No. 11, 39-41, 1995.
[25]
Fisher, M.; Savva, M.; Hanrahan, P. Characterizing structural relationships in scenes using graph kernels. ACM Transactions on Graphics Vol. 30, No. 4, Article No. 34, 2011.
[26]
Zeng, J.; Cheung, W. K.; Liu, J. Learning topic models by belief propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 35, No. 5, 1121-1134, 2013.
[27]
Kschischang, F. R.; Frey, B. J. Iterative decoding of compound codes by probability propagation in graphical models. IEEE Journal on Selected Areas in Communications Vol. 16, No. 2, 219-230, 1998.
[28]
Blei, D. M.; Ng, A. Y.; Jordan, M. I. Latent dirichlet allocation. Journal of Machine Learning Research Vol. 3, 993-1022, 2003.
[29]
Abbeel, P.; Koller, D.; Ng, A. Y. Learning factor graphs in polynomial time and sample complexity. Journal of Machine Learning Research Vol. 7, 1743-1788, 2006.
[30]
Gelfand, A. E.; Hills, S. E.; Racine-Poon, A.; Smith, A. F. M. Illustration of Bayesian inference in normal data models using Gibbs sampling. Journal of the American Statistical Association Vol. 85, No. 412, 972-985, 1990.
[31]
Schwarz, G. Estimating the dimension of a model. The Annals of Statistics Vol. 6, No. 2, 461-464, 1978.
[32]
Soleimani, H.; Miller, D. J. Parsimonious topic models with salient word discovery. IEEE Transactions on Knowledge and Data Engineering Vol. 27, No. 3, 824-837, 2015.
[33]
Lepage, G. P. A new algorithm for adaptive multidimensional integration. Journal of Com-putational Physics Vol. 27, No. 2, 192-203, 1978.
[35]
Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, 945-953, 2015.
[36]
Ma, R.; Li, H.; Zou, C.; Liao, Z.; Tong, X.; Zhang, H. Action-driven 3D indoor scene evolution. ACM Transactions on Graphics Vol. 35, No. 6, Article No. 173, 2016.
[37]
Merrell, P.; Schkufza, E.; Li, Z.; Agrawala, M.; Koltun, V. Interactive furniture layout using interior design guidelines. ACM Transactions on Graphics Vol. 30, No. 4, Article No. 87, 2011.
[38]
Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2181-2187, 2015.
[39]
Fisher, M.; Savva, M.; Li, Y.; Hanrahan, P.; Nieβner, M. Activity-centric scene synthesis for functional 3D scene modeling. ACM Transactions on Graphics Vol. 34, No. 6, Article No. 179, 2015.
Computational Visual Media
Pages 123-137
Cite this article:
Liang Y, Xu F, Zhang S-H, et al. Knowledge graph construction with structure and parameter learning for indoor scene design. Computational Visual Media, 2018, 4(2): 123-137. https://doi.org/10.1007/s41095-018-0110-3

1094

Views

44

Downloads

33

Crossref

N/A

Web of Science

36

Scopus

2

CSCD

Altmetrics

Revised: 08 January 2018
Accepted: 13 January 2018
Published: 21 March 2018
© The Author(s) 2018

This article is published with open access at Springerlink.com

The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www. editorialmanager.com/cvmj.

Return