AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Acquiring non-parametric scattering phase function from a single image

Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
Dwango CG Research, KADOKAWA Hongo Bldg. 5-24-5Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
Show Author Information

Abstract

Acquiring accurate scattering properties is important for rendering translucent materials. In particular, the phase function, which determines the distribution of scattering directions, plays a significant role in the appearance of a material. We propose a distinctive scattering theory that approximates the effect of single scattering to acquire the non-parametric phase function from a single image. Furthermore, in various experiments, we measured the phase functions from several real diluted media and rendered images of these materials to evaluate the effectiveness of our theory.

References

[1]
H. W. Jensen,; S. R. Marschner,; M. Levoy,; P. Hanrahan, A practical model for subsurface light transport. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, 511-518, 2001.
[2]
L.-Q. Yan,; Y. Zhou,; K. Xu,; R. Wang, Accuratetranslucent material rendering under spherical Gaussian lights. Computer Graphics Forum Vol. 31, No. 7, 2267-2276, 2012.
[3]
Y. Song,; X. Tong,; F. Pellacini,; P. Peers, SubEdit: A representation for editing measured heterogeneous subsurface scattering. ACM Transactions on Graphics Vol. 28, No. 3, Article No. 31, 2009.
[4]
K. Xu,; Y. Gao,; Y. Li,; T. Ju,; S.-M. Hu, Real-time homogenous translucent material editing. Computer Graphics Forum Vol. 26, No. 3, 545-552, 2007.
[5]
B. T. Phong, Illumination for computer generated pictures. Communications of the ACM Vol. 18, No. 6, 311-317, 1975.
[6]
G. J. Ward, Measuring and modeling anisotropic reflection. ACM SIGGRAPH Computer Graphics Vol. 26, No. 2, 265-272, 1992.
[7]
E. P. F. Lafortune,; S.-C. Foo,; K. E. Torrance,; D. P. Greenberg, Non-linear approximation of reflectance functions. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, 117-126, 1997.
[8]
X. D. He,; K. E. Torrance,; F. X. Sillion,; D. P. Greenberg, A comprehensive physical model for light reflection. ACM SIGGRAPH Computer Graphics Vol. 25, No. 4, 175-186, 1991.
[9]
G. Müller,; G. H. Bendels,; R. Klein, Rapid synchronous acquisition of geometry and appearance of cultural heritage artefacts. In: Proceedings of the 6th International Conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage, 13-20, 2005.
[10]
M. Ben-Ezra,; J. Wang,; B. Wilburn,; X. Li,; L. Ma, An LED-only BRDF measurement device. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-8, 2008.
[11]
S. R. Marschner,; S. H. Westin,; E. P. F. Lafortune,; K. E. Torrance,; D. P. Greenberg, Image-based BRDF measurement including human skin. In: Proceedings of the 10th Eurographics Conference on Rendering, 131-144, 1999.
[12]
W. Matusik,; H. Pfister,; M. Brand,; L. McMillan, A data-driven reflectance model. ACM Transactions on Graphics Vol. 22, No. 3, 759-769, 2003.
[13]
Y. Mukaigawa,; K. Sumino,; Y. Yagi, Multiplexed illumination for measuring BRDF using an ellipsoidal mirror and a projector. In: Computer Vision-ACCV 2007. Lecture Notes in Computer Science, Vol. 4844. Y. Yagi,; S. B. Kang,; I. S. Kweon,; H. Zha, Eds. Springer Berlin Heidelberg, 246-257, 2007.
[14]
A. Ghosh,; W. Heidrich,; S. Achutha,; M. O’Toole, A basis illumination approach to BRDF measurement. International Journal of Computer Vision Vol. 90, No. 2, 183-197, 2010.
[15]
C. Donner,; H. W. Jensen, Light diffusion in multi-layered translucent materials. ACM Transactions on Graphics Vol. 24, No. 3, 1032-1039, 2005.
[16]
M. Papas,; C. Regg,; W. Jarosz,; B. Bickel,; P. Jackson,; W. Matusik,; S. Marschner,; M. Gross, Fabricating translucent materials using continuous pigment mixtures. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 146, 2013.
[17]
A. Munoz,; J. I. Echevarria,; F. J. Seron,; J. Lopez-Moreno,; M. Glencross,; D. Gutierrez, BSSRDF estimation from single images. Computer Graphics Forum Vol. 30, No. 2, 455-464, 2011.
[18]
J. Gu,; S. K. Nayar,; E. Grinspun,; P. N. Belhumeur,; R. Ramamoorthi, Compressive structured light for recovering inhomogeneous participating media. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 35, No. 3, 1-1, 2013.
[19]
P. Khungurn,; D. Schroeder,; S. Zhao,; K. Bala,; S. Marschner, Matching real fabrics with micro-appearance models. ACM Transactions on Graphics Vol. 35, No. 1, Article No. 1, 2015.
[20]
I. Gkioulekas,; B. Xiao,; S. Zhao,; E. H. Adelson,; T. Zickler,; K. Bala, Understanding the role of phase function in translucent appearance. ACM Transactions on Graphics Vol. 32, No. 5, Article No. 147, 2013.
[21]
L. G. Henyey,; J. L. Greenstein, Diffuse radiation in the galaxy. The Astrophysical Journal Vol. 93, 70-83, 1941.
[22]
C. Fuchs,; T. Chen,; M. Goesele,; H. Theisel,; H.-P. Seidel, Density estimation for dynamic volumes. Computers & Graphics Vol. 31, No. 2, 205-211, 2007.
[23]
S. G. Narasimhan,; M. Gupta,; C. Donner,; R. Ramamoorthi,; S. K. Nayar,; H. W. Jensen, Acquiring scattering properties of participating media by dilution. ACM Transactions on Graphics Vol. 25, No. 3, 1003-1012, 2006.
[24]
Y. Mukaigawa,; R. Raskar,; Y. Yagi, Analysis of scattering light transport in translucent media. IPSJ Transactions on Computer Vision and Applications Vol. 3, 122-133, 2011.
[25]
G. W. Kattawar, A three-parameter analytic phase function for multiple scattering calculations. Journal of Quantitative Spectroscopy and Radiative Transfer Vol. 15, No. 9, 839-849, 1975.
[26]
I. Gkioulekas,; S. Zhao,; K. Bala,; T. Zickler,; A. Levin, Inverse volume rendering with material dictionaries. ACM Transactions on Graphics Vol. 32, No. 6, Article No. 162, 2013.
[27]
T. Hawkins,; P. Einarsson,; P. Debevec, Acquisition of time-varying participating media. ACM Transactions on Graphics Vol. 24, No. 3, 812-815, 2005.
Computational Visual Media
Pages 323-331
Cite this article:
Minetomo Y, Kubo H, Funatomi T, et al. Acquiring non-parametric scattering phase function from a single image. Computational Visual Media, 2018, 4(4): 323-331. https://doi.org/10.1007/s41095-018-0122-z

638

Views

13

Downloads

2

Crossref

N/A

Web of Science

2

Scopus

1

CSCD

Altmetrics

Revised: 06 May 2018
Accepted: 01 July 2018
Published: 22 August 2018
© The Author(s) 2018

This article is published with open access at Springerlink.com

The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.

Return