AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Livestock detection in aerial images using a fully convolutional network

Department of Computer Technology and Application, Qinghai University, Xining, China.
Department of Computer Science and Technology, Tsinghua University, Beijing, China.
School of Computer Science and Informatics, CardiffUniversity, Cardiff, Wales, UK.
Show Author Information

Abstract

In order to accurately count the number of animals grazing on grassland, we present a livestock detection algorithm using modified versions of U-net and Google Inception-v4 net. This method works wellto detect dense and touching instances. We also introduce a dataset for livestock detection in aerial images, consisting of 89 aerial images collected by quadcopter. Each image has resolution of about 3000×4000 pixels, and contains livestock with varying shapes, scales, and orientations.

We evaluate our method by comparison against Faster RCNN and Yolo-v3 algorithms using our aerial livestock dataset. The average precision of our method is better than Yolo-v3 and is comparable to Faster RCNN.

References

[1]
Everingham, M.; van Gool, L.; Williams, C. K. I.; Winn, J.; Zisserman, A. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision Vol. 88, No. 2, 303-338, 2010.
[2]
Lin, T. Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C. L.Microsoft COCO: Common objects in context. In: Computer Vision—ECCV 2014. Lecture Notes in Computer Science, Vol. 8693. Fleet, D.; Pajdla, T.; Schiele, B.; Tuytelaars, T. Eds. Springer Cham, 740-755, 2014.
[3]
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 248-255, 2009.
[4]
Russell, B.; Torralba, A.; Murphy, K.; Freeman, W. LabeMe: A database and web-based tool for image annotation. International Journal of Computer Vision Vol. 77, 157-173, 2008.
[5]
Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In: Proceedings of the International Conference on Neural Information Processing Systems, 91-99, 2015.
[6]
Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 779-788, 2016.
[7]
Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A. C.SSD: Single shot multibox detector. In: Computer Vision—ECCV 2016. Lecture Notes in Computer Science, Vol. 9905. Leibe, B.; Matas, J.; Sebe, N.; Welling, M. Eds. Springer Cham, 21-37, 2016.
[8]
He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, 2961-2969, 2017.
[9]
Ronneberger, O.; Fischer, P.; Brox, T.U-Net: Con-volutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015. Lecture Notes in Computer Science, Vol. 9351. Navab, N.; Hornegger, J.; Wells, W.; Frangi, A. Eds. Springer Cham, 234-241, 2015.
[10]
Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. A. Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 4278-4284, 2016.
[11]
Xia, G.-S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A large-scale dataset for object detection in aerial images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3974-3983, 2018.
[12]
Cheng, G.; Zhou, P.; Han, J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Transactions on Geoscience and Remote Sensing Vol. 54, No. 12, 7405-7415, 2016.
[13]
Zhu, H.; Chen, X.; Dai, W.; Fu, K.; Ye, Q.; Jiao, J. Orientation robust object detection in aerial images using deep convolutional neural network. In: Proceedings of the IEEE International Conference on Image Processing, 3735-3739, 2015.
[14]
Heitz, G.; Koller, D.Learning spatial context: Using stuff to find things. In: Computer Vision—ECCV 2008. Lecture Notes in Computer Science, Vol. 5302. Forsyth, D.; Torr, P.; Zisserman, A. Eds. Springer Berlin Heidelberg, 30-43, 2008.
[15]
Razakarivony, S.; Jurie, F. Vehicle detection in aerial imagery: A small target detection benchmark. Journal of Visual Communication and Image Representation Vol. 34, 187-203, 2016.
[16]
Mundhenk, T. N.; Konjevod, G.; Sakla, W. A.; Boakye, K.A large contextual dataset for classification, detection and counting of cars with deep learning. In: Computer Vision—ECCV 2016. Lecture Notes in Computer Science, Vol. 9907. Leibe, B.; Matas, J.; Sebe, N.; Welling, M. Eds. Springer Cham, 785-800, 2016.
[17]
Liu, K.; Mattyus, G. Fast multiclass vehicle detection on aerial images.IEEE Geoscience and Remote Sensing Letters Vol. 12, No. 9, 1938-1942, 2015.
[18]
Liu, Z.; Wang, H.; Weng, L.; Yang, Y. Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds. IEEE Geoscience and Remote Sensing Letters Vol. 13, No. 8, 1074-1078, 2017.
[19]
Cheng, M.-M.; Zhang, F.-L.; Mitra, N. J.; Huang, X.; Hu, S.-M. RepFinder: Finding approximately repeated scene elements for image editing. ACM Transactions on Graphics Vol. 29, No. 4, Article No. 83, 2010.
[20]
Krizhevsky, A.; Sutskever, I.; Hinton, G. E. ImageNet classification with deep convolutional neural networks. In: Proceedings of the International Conference on Neural Information Processing Systems, 1097-1105, 2012.
[21]
Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 580-587, 2014.
[22]
Girshick, R. Fast R-CNN In: Proceedings of the IEEE International Conference on Computer Vision, 1440-1448, 2015.
[23]
Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7263-7271, 2017.
[24]
Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018.
[25]
Zhang, F.-L.; Xian, W.; Li, R.-L.; Zheng, Z.-H.; Wang, J.; Hu, S.-M. Detecting and removing visual distractors for video aesthetic enhancement. IEEE Transactions on Multimedia Vol. 20, No. 8, 1987-1999, 2018.
[26]
Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431-3440, 2015.
[27]
Sakla, W.; Konjevod, G.; Mundhenk, T. N. Deep multi-modal vehicle detection in aerial ISR imagery. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 916-923, 2017.
Computational Visual Media
Pages 221-228
Cite this article:
Han L, Tao P, Martin RR. Livestock detection in aerial images using a fully convolutional network. Computational Visual Media, 2019, 5(2): 221-228. https://doi.org/10.1007/s41095-019-0132-5

671

Views

45

Downloads

37

Crossref

N/A

Web of Science

41

Scopus

0

CSCD

Altmetrics

Revised: 12 December 2018
Accepted: 27 January 2019
Published: 30 March 2019
© The author(s) 2019

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyrightholder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www. editorialmanager.com/cvmj.

Return