PDF (1.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

What and where: A context-based recommendation system for object insertion

Tsinghua University, Beijing 100084, China.
Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
Department of Computer Science Media Technology Research Center, University of Bath, Bath BA2 7AY, UK.
Show Author Information

Abstract

We propose a novel problem revolving around two tasks: (i) given a scene, recommend objects to insert, and (ii) given an object category, retrieve suitable background scenes. A bounding box for the inserted object is predicted in both tasks, which helps downstream applications such as semi-automated advertising and video composition. The major challenge lies in the fact that the target object is neither present nor localized in the input, and furthermore, available datasets only provide scenes with existing objects. To tackle this problem, we build an unsupervised algorithm based on object-level contexts, which explicitly models the joint probability distribution of object categories and bounding boxes using a Gaussian mixture model. Experiments on our own annotated test set demonstrate that our system outperforms existing baselines on all sub-tasks, and does so using a unified framework. Future extensions and applications are suggested.

References

[1]
F. Ricci,; L. Rokach,; B. Shapira, Recommender Systems Handbook. Boston: Springer, 2011.
[2]
Recommender system. Available at https://en.wikipedia.org/wiki/Recommender_system.
[3]
J. Johnson,; R. Krishna,; M. Stark,; L. J. Li,; D. A. Shamma,; M. S. Bernstein,; L. Fei-Fei, Image retrieval using scene graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3668-3678, 2015.
[4]
J. Wang,; W. Liu,; S. Kumar,; S. F. Chang, Learning to hash for indexing big data: A survey. Proceedings of the IEEE Vol. 104, No. 1, 34-57, 2016.
[5]
L. Zheng,; Y. Yang,; Q. Tian, SIFT meets CNN: A decade survey of instance retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 40, No. 5, 1224-1244, 2018.
[6]
A. Rabinovich,; A. Vedaldi,; C. Galleguillos,; E. Wiewiora,; S. Belongie, Objects in context. In: Proceedings of the IEEE 11th International Conference on Computer Vision, 1-8, 2007.
[7]
K. M. He,; X. Y. Zhang,; S. Q. Ren,; J. Sun, Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778, 2016.
[8]
A. Krizhevsky,; I. Sutskever,; G. E. Hinton, ImageNet classification with deep convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 25, 1097-1105, 2012.
[9]
C. Szegedy,; W. Liu,; Y. Q. Jia,; P. Sermanet,; S. Reed,; D. Anguelov,; D. Erhan,; V. Vanhoucke,; A. Rabinovich, Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-9, 2015.
[10]
S. Ren,; K. He,; R. Girshick,; J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks. In: Proceedings of the Advances in Neural Information Processing Systems 28, 91-99, 2015.
[11]
R. Girshick,; J. Donahue,; T. Darrell,; J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 580-587, 2014.
[12]
W. Liu,; D. Anguelov,; D. Erhan,; C. Szegedy,; S. Reed,; C. Y. Fu,; A. C. Berg, SSD: Single shot MultiBox detector. In: Computer Vision-ECCV 2016. Lecture Notes in Computer Science, Vol. 9905. B. Leibe,; J. Matas,; N. Sebe,; M. Welling, Eds. Springer Cham, 21-37, 2016.
[13]
B. L. Zhou,; A. Khosla,; A. Lapedriza,; A. Oliva,; A. Torralba, Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2921-2929, 2016.
[14]
H. Bilen,; A. Vedaldi, Weakly supervised deep detection networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2846-2854, 2016.
[15]
V. Kantorov,; M. Oquab,; M. Cho,; I. Laptev, ContextLocNet: Context-aware deep network models for weakly supervised localization. In: Computer Vision-ECCV 2016. Lecture Notes in Computer Science, Vol. 9909. B. Leibe; J. Matas; N. Sebe; M. Welling Eds. Springer Cham, 350-365, 2016.
[16]
K. M. He,; G. Gkioxari,; P. Dollar,; R. Girshick, Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, 2961-2969, 2017.
[17]
J. Long,; E. Shelhamer,; T. Darrell, Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431-3440, 2015.
[18]
W. Liu,; A. Rabinovich,; A. C. Berg, Parsenet: Looking wider to see better. arXiv preprint arXiv:1506.04579, 2015.
[19]
W. Zhou,; H. Li,; Q. Tian, Recent advance in content-based image retrieval: A literature survey. arXiv preprint arXiv:1706.06064, 2017.
[20]
S.-M. Hu,; F.-L. Zhang,; M Wang,; R. R. Martin,; J. Wang, PatchNet: A patch-based image representation for interactive library-driven image editing. ACM Transactions on Graphics Vol. 32, No. 6, Article No. 196, 2013.
[21]
J. H. Yu,; Z. Lin,; J. M. Yang,; X. H. Shen,; X. Lu,; T. S. Huang, Generative image inpainting with contextual attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5505-5514, 2018.
[22]
S. Hong,; X. Yan,; T. Huang,; H. Lee, Learning hierarchical semantic image manipulation through structured representations. In: Proceedings of the 32nd Conference on Neural Information Processing Systems, 2708-2718, 2018.
[23]
D. Lee,; S. Liu,; J. Gu,; M.-Y. Liu,; M.-H. Yang,; J. Kautz, Context-aware synthesis and placement of object instances. In: Proceedings of the Advances in Neural Information Processing Systems 31, 10393-10403, 2018.
[24]
C.H. Lin,; E. Yumer,; O. Wang,; E. Shechtman,; S. Lucey, ST-GAN: Spatial transformer generative adversarial networks for image compositing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 9455-9464, 2018.
[25]
F. W. Tan,; C. Bernier,; B. Cohen,; V. Ordonez,; C. Barnes, Where and who? Automatic semantic-aware person composition. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 1519-1528, 2018.
[26]
P. Anderson,; X. D. He,; C. Buehler,; D. Teney,; M. Johnson,; S. Gould,; L. Zhang, Bottom-up and top-down attention for image captioning and visual question answering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6077-6086, 2018.
[27]
D. F. Xu,; Y. K. Zhu,; C. B. Choy,; L. Fei-Fei, Scene graph generation by iterative message passing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3097-3106, 2017.
[28]
R. Krishna,; Y. K. Zhu,; O. Groth,; J. Johnson,; K. J. Hata,; J. Kravitz,; S. Chen,; Y. Kalantidis,; L.-J. Li,; D. A Shamma,. et al. Visual genome: Connecting language and vision using crowdsourced dense image annotations. International Journal of Computer Vision Vol. 123, No. 1, 32-73, 2017.
[29]
F. Pedregosa,; G. Varoquaux,; A. Gramfort,; V. Michel,; B. Thirion,; O. Grisel,; M. Blondel,; P. Prettenhofer,; R. Weiss,; V Dubourg,. et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research Vol. 12, 2825-2830, 2011.
[30]
K. Järvelin,; J. Kekäläinen, Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems Vol. 20, No. 4, 422-446, 2002.
[31]
Bag-of-words model. Available at https://en.wikipedia.org/wiki/Bag-of-words_model.
[32]
F. Yu,; V. Koltun, Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122, 2015.
[33]
T. Y. Lin,; M. Maire,; S. Belongie,; J. Hays,; P. Perona,; D. Ramanan,; P. Dollar,; C. L. Zitnick, Microsoft COCO: Common objects in context. In: Computer Vision - ECCV 2014. Lecture Notes in Computer Science, Vol. 8693. D. Fleet,; T. Pajdla,; B. Schiele,; T. Tuytelaars, Eds. Springer Cham, 740-755, 2014.
[34]
S. H. Zhang,; S. K. Zhang,; Y. Liang,; P. Hall, A survey of 3D indoor scene synthesis. Journal of Computer Science and Technology Vol. 34, No. 3, 594-608, 2019.
[35]
S. M. Ge,; X. Jin,; Q. T. Ye,; Z. Luo,; Q. Li, Image editing by object-aware optimal boundary searching and mixed-domain composition. Computational Visual Media Vol. 4, No. 1, 71-82, 2018.
[36]
H. Todo,; Y. Yamaguchi, Estimating reflectance and shape of objects from a single cartoon-shaded image. Computational Visual Media Vol. 3, No. 1, 21-31, 2017.
Computational Visual Media
Pages 79-93
Cite this article:
Zhang S-H, Zhou Z-P, Liu B, et al. What and where: A context-based recommendation system for object insertion. Computational Visual Media, 2020, 6(1): 79-93. https://doi.org/10.1007/s41095-020-0158-8
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return