PDF (1.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

Learning local shape descriptors for computing non-rigid dense correspondence

National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
University of Maryland-College Park, Maryland, USA.
Shenzhen VisuCA Key Lab, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Show Author Information

Abstract

A discriminative local shape descriptor plays an important role in various applications. In this paper, we present a novel deep learning framework that derives discriminative local descriptors for deformable 3D shapes. We use local "geometry images" to encode the multi-scale local features of a point, via an intrinsic parameterization method based on geodesic polar coordinates. This new parameterization provides robust geometry images even for badly-shaped triangular meshes. Then a triplet network with shared architecture and parameters is used to perform deep metric learning; its aim is to distinguish between similar and dissimilar pairs of points. Additionally, a newly designed triplet loss function is minimized for improved, accurate training of the triplet network. To solve the dense correspondence problem, an efficient sampling approach is utilized to achieve a good compromise between training performance and descriptor quality. During testing, given a geometry image of a point of interest, our network outputs a discriminative local descriptor for it. Extensive testing of non-rigid dense shape matching on a variety of benchmarks demonstrates the superiority of the proposed descriptors over the state-of-the-art alternatives.

References

[1]
É. Corman,; M. Ovsjanikov,; A. Chambolle, Supervised descriptor learning for non-rigid shape matching. In: Computer Vision - ECCV 2014 Workshops. Lecture Notes in Computer Science, Vol. 8928. L. Agapito,; M. Bronstein,; C. Rother, Eds. Springer Cham, 283-298, 2015.
[2]
Y. L. Guo,; M. Bennamoun,; F. Sohel,; M. Lu,; J. W. Wan, 3D object recognition in cluttered scenes with local surface features: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 36, No. 11, 2270-2287, 2014.
[3]
Z. H. Lian,; A. Godil,; B. Bustos,; M. Daoudi,; J. Hermans,; S. Kawamura,; Y. Kurita,; G. Lavoué,; H. Van Nguyen,; R. Ohbuchi,; et al. A comparison of methods for non-rigid 3D shape retrieval. Pattern Recognition Vol. 46, No. 1, 449-461, 2013.
[4]
O. Van Kaick,; H. Zhang,; G. Hamarneh,; D. Cohen-Or, A survey on shape correspondence. Computer Graphics Forum Vol. 30, No. 6, 1681-1707, 2011.
[5]
Y. Q. Wang,; J. W. Guo,; D. M. Yan,; K. Wang,; X. P. Zhang, A robust local spectral descriptor for matching non-rigid shapes with incompatible shape structures. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6231-6240, 2019.
[6]
S. A. A. Shah,; M. Bennamoun,; F. Boussaid, A novel 3D vorticity based approach for automatic registration of low resolution range images. Pattern Recognition Vol. 48, No. 9, 2859-2871, 2015.
[7]
A. E. Johnson,; M. Hebert, Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 21, No. 5, 433-449, 1999.
[8]
R. Gal,; D. Cohen-Or, Salient geometric features for partial shape matching and similarity. ACM Transactions on Graphics Vol. 25, No. 1, 130-150, 2006.
[9]
J. Sun,; M. Ovsjanikov,; L. Guibas, A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum Vol. 28, No. 5, 1383-1392, 2009.
[10]
H. B. Huang,; E. Kalogerakis,; S. Chaudhuri,; D. Ceylan,; V. G. Kim,; E. Yumer, Learning local shape descriptors from part correspondences with multiview convolutional networks. ACM Transactions on Graphics Vol. 37, No. 1, Article No. 6, 2018.
[11]
A. Zeng,; S. R. Song,; M. NieBner,; M. Fisher,; J. X. Xiao,; T. Funkhouser, 3DMatch: Learning local geometric descriptors from RGB-D reconstructions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 199-208, 2017.
[12]
F. Monti,; D. Boscaini,; J. Masci,; E. Rodola,; J. Svoboda,; M. M. Bronstein, Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5425-5434, 2017.
[13]
D. Anguelov,; P. Srinivasan,; D. Koller,; S. Thrun,; J. Rodgers,; J. Davis, SCAPE: Shape completion and animation of people. In: Proceedings of the SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, 408-416, 2005.
[14]
A. Bronstein,; M. Bronstein,; R. Kimmel, In the rigid kingdom. In: Numerical Geometry of Non-Rigid Shapes. Springer New York, 119-135, 2008.
[15]
A. Sinha,; J. Bai,; K. Ramani, Deep learning 3D shape surfaces using geometry images. In: Computer Vision - ECCV 2016. Lecture Notes in Computer Science, Vol. 9910. B. Leibe,; J. Matas,; N. Sebe,; M. Welling, Eds. Springer Cham, 223-240, 2016.
[16]
J. Wang,; Y. Song,; T. Leung,; C. Rosenberg,; J. B. Wang,; J. Philbin,; B Chen,; Y. Wu, Learning fine-grained image similarity with deep ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1386-1393, 2014.
[17]
H. Y. Wang,; J. W. Guo,; D. M. Yan,; W. Z. Quan,; X. P. Zhang, Learning 3D keypoint descriptors for non-rigid shape matching. In: Computer Vision - ECCV 2018. Lecture Notes in Computer Science, Vol. 11212. V. Ferrari,; M. Hebert,; C. Sminchisescu,; Y. Weiss, Eds. Springer Cham, 3-20, 2018.
[18]
Y. L. Guo,; M. Bennamoun,; F. Sohel,; M. Lu,; J. W. Wan,; N. M. Kwok, A comprehensive performance evaluation of 3D local feature descriptors. International Journal of Computer Vision Vol. 116, No. 1, 66-89, 2016.
[19]
A. Frome,; D. Huber,; R. Kolluri,; T. Bülow,; J. Malik, Recognizing objects in range data using regional point descriptors. In: Computer Vision - ECCV 2004. Lecture Notes in Computer Science, Vol. 3023. T. Pajdla,; J. Matas, Eds. Springer Berlin Heidelberg, 224-237, 2004.
[20]
A. Zaharescu,; E. Boyer,; K. Varanasi,; R. Horaud, Surface feature detection and description with applications to mesh matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 373-380, 2009.
[21]
F. Tombari,; S. Salti,; L. di Stefano, Unique signatures of histograms for local surface description. In: Computer Vision - ECCV 2010. Lecture Notes in Computer Science, Vol. 6313. K. Daniilidis; P. Maragos; N. Paragios Eds. Springer Berlin Heidelberg, 356-369, 2010.
[22]
A. M. Bronstein,; M. M. Bronstein,; L. J. Guibas,; M. Ovsjanikov, Shape google: Geometric words and expressions for invariant shape retrieval. ACM Transactions on Graphics Vol. 3, No. 1, Article No. 1, 2011.
[23]
Y. L. Guo,; F. Sohel,; M. Bennamoun,; M. Lu,; J. W. Wan, Rotational projection statistics for 3D local surface description and object recognition. International Journal of Computer Vision Vol. 105, No. 1, 63-86, 2013.
[24]
A. Elad,; R. Kimmel, On bending invariant signatures for surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 25, No. 10, 1285-1295, 2003.
[25]
M. Aubry,; U. Schlickewei,; D. Cremers, The wave kernel signature: A quantum mechanical approach to shape analysis. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, 1626-1633, 2011.
[26]
I. Kokkinos,; M. M. Bronstein,; R. Litman,; A. M. Bronstein, Intrinsic shape context descriptors for deformable shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 159-166, 2012.
[27]
R. Litman,; A. M. Bronstein, Learning spectral descriptors for deformable shape correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 36, No. 1, 171-180, 2014.
[28]
L. Gao,; Y. P. Cao,; Y. K. Lai,; H. Z. Huang,; L. Kobbelt,; S. M. Hu, Active exploration of large 3D model repositories. IEEE Transactions on Visualization and Computer Graphics Vol. 21, No. 12, 1390-1402, 2015.
[29]
Q. X. Huang,; G. X. Zhang,; L. Gao,; S. M. Hu,; A. Butscher,; L. Guibas, An optimization approach for extracting and encoding consistent maps in a shape collection. ACM Transactions on Graphics Vol. 31, No. 6, Article No. 167, 2012.
[30]
L. Y. Wei,; Q. X. Huang,; D. Ceylan,; E. Vouga,; H. Li, Dense human body correspondences using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1544-1553, 2016.
[31]
R. Q. Charles,; S. Hao,; K. C. Mo,; L. J. Guibas, PointNet: Deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 77-85, 2017.
[32]
M. Khoury,; Q.Y. Zhou,; V. Koltun, Learning compact geometric features. In: Proceedings of the IEEE International Conference on Computer Vision, 153-161, 2017.
[33]
S. Bai,; X. Bai,; Z. C. Zhou,; Z. X. Zhang,; Q. Tian,; L. J. Latecki, GIFT: Towards scalable 3D shape retrieval. IEEE Transactions on Multimedia Vol. 19, No. 6, 1257-1271, 2017.
[34]
M. M. Bronstein,; J. Bruna,; Y. LeCun,; A. Szlam,; P. Vandergheynst, Geometric deep learning: Going beyond Euclidean data. IEEE Signal Processing Magazine Vol. 34, No. 4, 18-42, 2017.
[35]
D. Boscaini,; J. Masci,; S. Melzi,; M. M. Bronstein,; U. Castellani,; P. Vandergheynst, Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. Computer Graphics Forum Vol. 34, No. 5, 13-23, 2015.
[36]
J. Masci,; D. Boscaini,; M. M. Bronstein,; P. Vandergheynst, Geodesic convolutional neural networks on Riemannian manifolds. In: Proceedings of the IEEE International Conference on Computer Vision Workshop, 37-45, 2015.
[37]
D. Boscaini,; J. Masci,; E. Rodolà,; M. Bronstein, Learning shape correspondence with anisotropic convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems, 3189-3197, 2016.
[38]
O. Litany,; T. Remez,; E. Rodola,; A. Bronstein,; M. Bronstein, Deep functional maps: Structured prediction for dense shape correspondence. In: Proceedings of the IEEE International Conference on Computer Vision, 5660-5668, 2017.
[39]
S. Biasotti,; A. Cerri,; A. Bronstein,; M. Bronstein, Recent trends, applications, and perspectives in 3D shape similarity assessment. Computer Graphics Forum Vol. 35, No. 6, 87-119, 2016.
[40]
M. Ovsjanikov,; E. Corman,; M. Bronstein,; E. Rodolà,; M. Ben-Chen,; L. Guibas,; F. Chazal,; A. Bronstein, Computing and processing correspondences with functional maps. In: Proceedings of the SIGGRAPH ASIA 2016 Courses, Article No. 9, 2016.
[41]
M. Ovsjanikov,; Q. Mérigot,; F. Mémoli,; L. Guibas, One point isometric matching with the heat kernel. Computer Graphics Forum Vol. 29, No. 5, 1555-1564, 2010.
[42]
F. Mémoli,; G. Sapiro, A theoretical and com-putational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics Vol. 5, No. 3, 313-347, 2005.
[43]
Q. F. Chen,; V. Koltun, Robust nonrigid registration by convex optimization. In: Proceedings of the IEEE International Conference on Computer Vision, 2039-2047, 2015.
[44]
M. Vestner,; R. Litman,; E. Rodola,; A. Bronstein,; D. Cremers, Product manifold filter: Non-rigid shape correspondence via kernel density estimation in the product space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 6681-6690, 2017.
[45]
R. R. Coifman,; S. Lafon,; A. B. Lee,; M. Maggioni,; B. Nadler,; F. Warner,; S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proceedings of the National Academy of Sciences of the United States of America Vol. 102, No. 21, 7426-7431, 2005.
[46]
M. Ovsjanikov,; M. Ben-Chen,; J. Solomon,; A. Butscher,; L. Guibas, Functional maps: A exible representation of maps between shapes. ACM Transactions on Graphics Vol. 31, No. 4, Article No. 30, 2012.
[47]
J. Pokrass,; A. M. Bronstein,; M. M. Bronstein,; P. Sprechmann,; G. Sapiro, Sparse modeling of intrinsic correspondences. Computer Graphics Forum Vol. 32, No. 2pt4, 459-468, 2013.
[48]
A. Kovnatsky,; M. M. Bronstein,; X. Bresson,; P. Vandergheynst, Functional correspondence by matrix completion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 905-914, 2015.
[49]
D. Nogneng,; M. Ovsjanikov, Informative descriptor preservation via commutativity for shape matching. Computer Graphics Forum Vol. 36, No. 2, 259-267, 2017.
[50]
E. Rodola,; S. Rota Bulo,; T. Windheuser,; M. Vestner,; D. Cremers, Dense non-rigid shape correspondence using random forests. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4177-4184, 2014.
[51]
X. F. Gu,; S. J. Gortler,; H. Hoppe, Geometry images. ACM Transactions on Graphics Vol. 21, No. 3, 355-361, 2002.
[52]
F. Bogo,; J. Romero,; M. Loper,; M. J. Black, FAUST: Dataset and evaluation for 3D mesh registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3794-3801, 2014.
[53]
I. Sipiran,; B. Bustos, Harris 3D: A robust extension of the Harris operator for interest point detection on 3D meshes. The Visual Computer Vol. 27, No. 11, 963-976, 2011.
[54]
D. M. Yan,; J. W. Guo,; X. H. Jia,; X. P. Zhang,; P. Wonka, Blue-noise remeshing with farthest point optimization. Computer Graphics Forum Vol. 33, No. 5, 167-176, 2014.
[55]
D. Boscaini,; J. Masci,; E. Rodolà,; M. M. Bronstein,; D. Cremers, Anisotropic diffusion descriptors. Computer Graphics Forum Vol. 35, No. 2, 431-441, 2016.
[56]
E. L. Melvaer,; M. Reimers, Geodesic polar coordinates on polygonal meshes. Computer Graphics Forum Vol. 31, No. 8, 2423-2435, 2012.
[57]
F. Schroff,; D. Kalenichenko,; J. Philbin, FaceNet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 815-823, 2015.
[58]
B, G. Vijay Kumar,; G. Carneiro,; I. Reid, Learning local image descriptors with deep Siamese and triplet convolutional networks by minimizing global loss functions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5385-5394, 2016.
[59]
J. Svoboda,; J. Masci,; M. M. Bronstein, Palmprint recognition via discriminative index learning. In: Proceedings of the 23rd International Conference on Pattern Recognition, 4232-4237, 2016.
[60]
S. Ioffe,; C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, 448-456, 2015.
[61]
A. L. Maas,; A. Y. Hannun,; A. Y. Ng, Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the 30th International Conference on Machine Learning, 2013.
[62]
X. Glorot,; Y. Bengio, Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, 249-256, 2010.
[63]
D. Kingma,; J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[64]
Y. P. Yang,; Y. Yu,; Y. Zhou,; S. D. Du,; J. Davis,; R. G. Yang, Semantic parametric reshaping of human body models. In: Proceedings of the 2nd International Conference on 3D Vision, 41-48, 2014.
[65]
M. Abadi,; A. Agarwal,; P. Barham,; E. Brevdo,; Z. Chen,; C. Citro,; G. S. Corrado,; A. Davis,; J. Dean,; M.; Devin, et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.
[66]
L. Cosmo,; E. Rodolà,; M. M. Bronstein,; A. Torsello,; D. Cremers,; Y. Sahillioglu, SHREC’16: Partial matching of deformable shapes. In: Proceedings of the Eurographics Workshop on 3D Object Retrieval, 2016.
Computational Visual Media
Pages 95-112
Cite this article:
Guo J, Wang H, Cheng Z, et al. Learning local shape descriptors for computing non-rigid dense correspondence. Computational Visual Media, 2020, 6(1): 95-112. https://doi.org/10.1007/s41095-020-0163-y
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return