AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (907.3 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

G2MF-WA: Geometric multi-model fitting with weakly annotated data

University of Fukui, Fukui, 910-8507, Japan.
Deakin University, Waurn Ponds, 3216, Australia.
The University of Tokyo, Tokyo, 113-8656, Japan.
Show Author Information

Abstract

In this paper we address the problem ofgeometric multi-model fitting using a few weakly annotated data points, which has been little studied so far. In weak annotating (WA), most manual annotations are supposed to be correct yet inevitably mixed with incorrect ones. Such WA data can naturally arise through interaction in various tasks. For example, in the case of homography estimation, one can easily annotate points on the same plane or object with a single label by observing the image. Motivated by this, we propose a novel method to make full use of WA data to boost multi-model fitting performance. Specifically, a graph for model proposal sampling is first constructed using the WA data, given the prior that WA data annotated with the same weak label has a high probability of belonging to the same model. By incorporating this prior knowledge into the calculation of edge probabilities, vertices (i.e., data points) lying on or near the latent model are likely to be associated and further form a subset or cluster for effective proposal generation. Having generated proposals, α-expansion is used for labeling, and our method in return updates the proposals. This procedure works in an iterative way. Extensive experiments validate our method and show that it produces noticeably better results than state-of-the-art techniques in most cases.

References

[1]
M. A. Fischler,; R. C. Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM Vol. 24, No. 6, 381-395, 1981.
[2]
Y. Boykov,; O. Veksler,; R. Zabih, Fast approximate energy minimization via graph cuts. In: Proceedings of the 7th IEEE International Conference on Computer Vision, 377-384, 1999.
[3]
A. Delong,; A. Osokin,; H. N. Isack,; Y. Boykov, Fast approximate energy minimization with label costs. International Journal of Computer Vision Vol. 96, No. 1, 1-27, 2012.
[4]
H. Isack,; Y. Boykov, Energy-based geometric multi-model fitting. International Journal of Computer Vision Vol. 97, No. 2, 123-147, 2012.
[5]
P. Amayo,; P. Pinies,; L. M. Paz,; P. Newman, Geometric multi-model fitting with a convex relaxation algorithm. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8138-8146, 2018.
[6]
T. T. Pham,; T. J. Chin,; J. Yu,; D. Suter, The random cluster model for robust geometric fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 36, No. 8, 1658-1671, 2014.
[7]
O. Chum,; J. Matas, Matching with PROSAC: Progressive sample consensus. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, 220-226, 2005.
[8]
D. Nistér, Preemptive RANSAC for live structure and motion estimation. Machine Vision and Applications Vol. 16, No. 5, 321-329, 2005.
[9]
E. Brachmann,; A. Krull,; S. Nowozin,; J. Shotton,; F. Michel,; S. Gumhold,; C. Rother, DSAC: Differentiable RANSAC for camera localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 6684-6692, 2017.
[10]
P. H. S. Torr, Geometric motion segmentation and model selection. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences Vol. 356, No. 1740, 1321-1340, 1998.
[11]
E. Vincent,; R. Laganiére, Detecting planar homo-graphies in an image pair. In: Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, 182-187, 2001.
[12]
M. Zuliani,; C. S. Kenney,; B. S. Manjunath, The multiRANSAC algorithm and its application to detect planar homographies. In: Proceedings of the IEEE International Conference on Image Processing, Vol. 3, III-153, 2005.
[13]
R. Toldo,; A. Fusiello, Robust multiple structures estimation with J-linkage. In: Computer Vision - ECCV 2008. Lecture Notes in Computer Science, Vol. 5302. D. Forsyth,; P. Torr,; A. Zisserman, Eds. Springer Berlin Heidelberg, 537-547, 2008.
[14]
L. Magri,; A. Fusiello, T-linkage: A continuous relaxation of J-linkage for multi-model fitting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3954-3961, 2014.
[15]
L. Magri,; A. Fusiello, Multiple models fitting as a set coverage problem. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3318-3326, 2016.
[16]
J. Yu,; T. J. Chin,; D. Suter, A global optimization approach to robust multi-model fitting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2041-2048, 2011.
[17]
Y. D. Jian,; C. S. Chen, Two-view motion segmentation by mixtures of dirichlet process with model selection and outlier removal. In: Proceedings of the IEEE 11th International Conference on Computer Vision, 1-8, 2007.
[18]
C. Nieuwenhuis,; E. Töppe,; D. Cremers, A survey and comparison of discrete and continuous multi-label optimization approaches for the potts model. International Journal of Computer Vision Vol. 104, No. 3, 223-240, 2013.
[19]
P. Meer, Robust techniques for computer vision. In: Emerging Topics in Computer Vision. G. Medioni,; S. B. Kang, Eds. Prentice Hall, 107-190, 2004.
[20]
O. Chum,; J. Matas,; J. Kittler, Locally optimized RANSAC. In: Pattern Recognition. Lecture Notes in Computer Science, Vol. 2781. B. Michaelis,; G. Krell, Eds. Springer Berlin Heidelberg, 236-243, 2003.
[21]
B. J. Tordoff,; D. W. Murray, Guided-MLESAC: Faster image transform estimation by using matching priors. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 27, No. 10, 1523-1535, 2005.
[22]
T. J. Chin,; J. Yu,; D. Suter, Accelerated hypothesis generation for multi-structure robust fitting. In: Computer Vision - ECCV 2010. Lecture Notes in Computer Science, Vol. 6315. K. Daniilidis; P. Maragos; N. Paragios Eds. Springer Berlin Heidelberg, 533-546, 2010.
[23]
M. A. T. Figueiredo,; A. K. Jain, Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 24, No. 3, 381-396, 2002.
[24]
R. H. Swendsen,; J. S. Wang, Nonuniversal critical dynamics in Monte Carlo simulations. Physical Review Letters Vol. 58, No. 2, 86, 1987.
[25]
R. Hartley,; A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge University Press, 2004.
[26]
C. Rother,; V. Kolmogorov,; A. Blake, “GrabCut”: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics Vol. 23, No. 3, 309-314, 2004.
[27]
N. Lazic,; I. Givoni,; B. Frey,; P. Aarabi, FLoSS: Facility location for subspace segmentation. In: Proceedings of the IEEE 12th International Conference on Computer Vision, 825-832, 2009.
[28]
H. S. Wong,; T.J. Chin,; J. Yu,; D. Suter, Dynamic and hierarchical multi-structure geometric model fitting. In: Proceedings of the International Conference on Computer Vision, 1044-1051, 2011.
[29]
T. T. Pham,; T.-J. Chin,; J. Yu,; D. Suter, Simultaneous sampling and multi-structure fitting with adaptive reversible jump MCMC. In: Proceedings of the Advances in Neural Information Processing Systems 24, 540-548, 2011.
[30]
Y. I. Adbel-Aziz, Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In: Proceedings of the ASP Symposium on Close-Range Photogrammetry, 1-18, 1971.
Computational Visual Media
Pages 135-145
Cite this article:
Zhang C, Lu X, Hotta K, et al. G2MF-WA: Geometric multi-model fitting with weakly annotated data. Computational Visual Media, 2020, 6(2): 135-145. https://doi.org/10.1007/s41095-020-0166-8

809

Views

26

Downloads

2

Crossref

N/A

Web of Science

2

Scopus

1

CSCD

Altmetrics

Received: 09 January 2020
Revised: 09 January 2020
Accepted: 19 January 2020
Published: 02 April 2020
© The Author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.

Return