PDF (706.1 KB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Tables (4)
Table 1
Table 2
Table 3
Table 4
Research Article | Open Access

Kernel-blending connection approximated by a neural network for image classification

Shandong University of Finance and Economics, Jinan 250014, China
Shandong University, Jinan 250100, China
Show Author Information

Abstract

This paper proposes a kernel-blending connection approximated by a neural network (KBNN) for image classification. A kernel mapping connection structure, guaranteed by the function approximation theorem, is devised to blend feature extraction and feature classification through neural network learning. First, a feature extractor learns features from the raw images. Next, an automatically constructed kernel mapping connection maps the feature vectors into a feature space. Finally, a linear classifier is used as an output layer of the neural network to provide classification results. Furthermore, a novel loss function involving a cross-entropy loss and a hinge loss is proposed to improve the generalizability of the neural network. Experimental results on three well-known image datasets illustrate that the proposed method has good classification accuracy and generalizability.

References

[1]
C. Cortes,; V. Vapnik, Support-vector networks. Machine Learning Vol. 20, 273-297, 1995.
[2]
E. Bagarinao,; T. Kurita,; M. Higashikubo,; H. Inayoshi, Adapting SVM image classifiers to changes in imaging conditions using incremental SVM: An application to car detection. In: Computer Vision-ACCV 2009. Lecture Notes in Computer Science, Vol. 5996. H. Zha,; R. Taniguchi,; S. Maybank, Eds. Springer Berlin Heidelberg, 363-372, 2010.
[3]
Y. Q. Guo,; X. P. Jia,; D. Paull, Effective sequential classifier training for SVM-based multitemporal remote sensing image classification. arXiv preprint arXiv:1706.04719, 2017.
[4]
G. E. Hinton,; S. Osindero,; Y. W. Teh, A fast learning algorithm for deep belief nets. Neural Computation Vol. 18, No. 7, 1527-1554, 2006.
[5]
Y. Bengio,; A. Courville,; P. Vincent, Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 35, No. 8, 1798-1828, 2013.
[6]
Y. LeCun,; B. E. Boser,; J. S. Denker,; D. Henderson,; R. Howard,; W. Hubbard,; L. D. Jackel, Back propagation applied to handwritten zip code recognition. Neural Computation Vol. 1, No. 4, 541-551, 1989.
[7]
A. Eitel,; J. T. Springenberg,; L. Spinello,; M. Riedmiller,; W. Burgard, Multimodal deep learning for robust RGB-D object recognition. arXiv preprint arXiv:1507.06821, 2015.
[8]
W. W. Shi,; Y. H. Gong,; X. Y. Tao,; D. Cheng,; N. N. Zheng, Fine-grained image classification using modified DCNNs trained by cascaded softmax and generalized large-margin losses IEEE Transactions on Neural Networks and Learning Systems Vol. 30, No. 3, 683-694, 2018.
[9]
X. X. Niu,; C. Y. Suen, A novel hybrid CNN-SVM classifier for recognizing handwritten digits Pattern Recognition Vol. 45, No. 4, 1318-1325, 2012.
[10]
X. Sun,; J. Park,; K. Kang,; J. Hur Novel hybrid CNN-SVM model for recognition of functional magnetic resonance images. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 1001-1006, 2017.
[11]
D. H. Hubel,; T. N. Wiesel, Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology Vol. 195, No. 1, 215-243, 1968.
[12]
K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics Vol. 36, No. 4, 193-202, 1980.
[13]
M. D. Zeiler,; R. Fergus, Visualizing and understanding convolutional networks. In: Computer Vision - ECCV 2014. Lecture Notes in Computer Science, Vol. 8689. D. Fleet,; T. Pajdla,; B. Schiele,; T. Tuytelaars, Eds. Springer Cham, 818-833, 2014.
[14]
P. Sermanet,; D. Eigen,; X. Zhang,; M. Mathieu,; R. Fergus,; Y. LeCun, OverFeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229, 2013.
[15]
F. L. Zhang,; X. Wu,; R.-L. Li,; J. Wang,; Z. H. Zheng,; S. M. Hu, Detecting and removing visual distractors for video aesthetic enhancement. IEEE Transactions on Multimedia Vol. 20, No. 8, 1987-1999, 2018.
[16]
Y. H. Wen,; L. Gao,; H. B. Fu,; F. L. Zhang,; S. H. Xia, Graph CNNs with motif and variable temporal block for skeleton-based action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence Vol. 33, 8989-8996, 2019.
[17]
S. Ioffe,; C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.
[18]
M. Lin,; Q. Chen,; S. C. Yan, Network in network. arXiv preprint arXiv:1312.4400, 2013.
[19]
G. Cybenko, Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems Vol. 2, No. 4, 303-314, 1989.
[20]
Y. LeCun,; L. Bottou,; Y. Bengio,; P. Haffner, Gradient-based learning applied to document recognition. Proceedings of the IEEE Vol. 86, No. 11, 2278-2324, 1998.
[21]
A. Krizhevsky,; G. Hinton, Learning multiple layers of features from tiny images. Master Thesis. University of Toronto, 2009.
[22]
Y. Tang, Deep learning using support vector machines. arXiv preprint arXiv:1306.0239, 2015.
[23]
W. T. Wan,; Y. Y. Zhong,; T. P. Li,; J. S. Chen, Rethinking feature distribution for loss functions in image classification. arXiv preprint arXiv:1803.02988, 2018.
[24]
H. Lee,; R. Grosse,; R. Ranganath,; A. Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th Annual International Conference on Machine Learning, 609-616, 2009.
[25]
T. H. Chan,; K. Jia,; S. H. Gao,; J. W. Lu,; Z. N. Zeng,; Y. Ma, PCANet: A simple deep learning baseline for image classification? IEEE Transactions on Image Processing Vol. 24, No. 12, 5017-5032, 2015.
[26]
E. Hosseini-Asl,; J. M. Zurada,; O. Nasraoui, Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints. IEEE Transactions on Neural Networks and Learning Systems Vol. 27, No. 12, 2486-2498, 2016.
[27]
H. Bristow,; A. Eriksson,; S. Lucey, Fast convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 391-398, 2013.
[28]
C. Y. Xu,; C. Y. Lu,; X. D. Liang,; J. B. Gao,; W. Zheng,; T. J. Wang,; S. C. Yan, Multi-loss regularized deep neural network. IEEE Transactions on Circuits and Systems for Video Technology Vol. 26, No. 12, 2273-2283, 2016.
[29]
I. J. Goodfellow,; D. Warde-Farley,; M. Mirza, A. Courville,; Y. Bengio, Maxout networks. arXiv preprint arXiv:1302.4389, 2013.
[30]
L. Wan,; M. Zeiler,; S. Zhang,; Y. LeCun,; R. Fergus, Regularization of neural networks using dropconnect. In: Proceedings of the 30th International Conference on Machine Learning, Vol. 28, 1058-1066, 2013.
[31]
M. Malinowski,; M. Fritz, Learnable pooling regions for image classification. arXiv preprint arXiv:1301.3516, 2013.
[32]
M. D. Zeiler,; R. Fergus,Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:1301.3557, 2013.
[33]
K. He,; X. Zhang,; S. Ren,; J. Sun, Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778, 2016.
Computational Visual Media
Pages 467-476
Cite this article:
Liu X, Zhang Y, Bao F, et al. Kernel-blending connection approximated by a neural network for image classification. Computational Visual Media, 2020, 6(4): 467-476. https://doi.org/10.1007/s41095-020-0181-9
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return