AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (23 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

A survey of visual analytics techniques for machine learning

BNRist, Tsinghua University, Beijing 100086, China
Microsoft, Redmond 98052, USA
Central South University, Changsha 410083, China
Show Author Information

Abstract

Visual analytics for machine learning has recently evolved as one of the most exciting areas in the field of visualization. To better identify which research topics are promising and to learn how to apply relevant techniques in visual analytics, we systematically review 259 papers published in the last ten years together with representative works before 2010. We build a taxonomy, which includes three first-level categories: techniques before model building, techniques during modeling building, and techniques after model building. Each category is further characterized by representative analysis tasks, and each task is exemplified by a set of recent influential works. We also discuss and highlight research challenges and promising potential future research opportunities useful for visual analytics researchers.

References

[1]
Liu, S. X.; Wang, X. T.; Liu, M. C.; Zhu, J. Towards better analysis of machine learning models: A visual analytics perspective. Visual Informatics Vol. 1, No. 1, 48-56, 2017.
[2]
Choo, J.; Liu, S. X. Visual analytics for explainable deep learning. IEEE Computer Graphics and Applications Vol. 38, No. 4, 84-92, 2018.
[3]
Hohman, F.; Kahng, M.; Pienta, R.; Chau, D. H. Visual analytics in deep learning: An interrogative survey for the next frontiers. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 8, 2674-2693, 2019.
[4]
Zeiler, M. D.; Fergus, R. Visualizing and understandingconvolutional networks. In: Computer Vision-ECCV 2014. Lecture Notes in Computer Science, Vol. 8689. Fleet, D.; Pajdla, T.; Schiele, B.; Tuytelaars, T. Eds. Springer Cham, 818-833, 2014.
[5]
Liu, S. X.; Wang, X. T.; Collins, C.; Dou, W. W.; Ouyang, F.; El-Assady, M.; Jiang, L.; Keim, D. A. Bridging text visualization and mining: A task-driven survey. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 7, 2482-2504, 2019.
[6]
Lu, Y. F.; Garcia, R.; Hansen, B.; Gleicher, M.; Maciejewski, R. The state-of-the-art in predictive visual analytics. Computer Graphics Forum Vol. 36, No. 3, 539-562, 2017.
[7]
Sacha, D.; Kraus, M.; Keim, D. A.; Chen, M. VIS4ML: An ontology for visual analytics assisted machine learning. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 385-395, 2019.
[8]
Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision Vol. 128, 336-359, 2020.
[9]
Zhang, Q. S.; Zhu, S. C. Visual interpretability for deep learning: A survey. Frontiers of Information Technology & Electronic Engineering Vol. 19, No. 1, 27-39, 2018.
[10]
Kandel, S.; Parikh, R.; Paepcke, A.; Hellerstein, J. M.; Heer, J. Profiler: Integrated statistical analysis and visualization for data quality assessment. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, 547-554, 2012.
[11]
Marsland, S. Machine Learning: an Algorithmic Perspective. Chapman and Hall/CRC, 2015.
[12]
Hung, N. Q. V.; Thang, D. C.; Weidlich, M.; Aberer, K. Minimizing efforts in validating crowd answers. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, 999-1014, 2015.
[13]
Choo, J.; Lee, C.; Reddy, C. K.; Park, H. UTOPIAN: User-driven topic modeling based on interactive nonnegative matrix factorization. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 12, 1992-2001, 2013.
[14]
Alemzadeh, S.; Niemann, U.; Ittermann, T.; Völzke, H.; Schneider, D.; Spiliopoulou, M.; Bühler, K.; Preim, B. Visual analysis of missing values in longitudinal cohort study data. Computer Graphics Forum Vol. 39, No. 1, 63-75, 2020.
[15]
Arbesser, C.; Spechtenhauser, F.; Muhlbacher, T.; Piringer, H. Visplause: Visual data quality assessment of many time series using plausibility checks. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 1, 641-650, 2017.
[16]
Bäuerle, A.; Neumann, H.; Ropinski, T. Classifier-guided visual correction of noisy labels for image classification tasks. Computer Graphics Forum Vol. 39, No. 3, 195-205, 2020.
[17]
Bernard, J.; Hutter, M.; Reinemuth, H.; Pfeifer, H.; Bors, C.; Kohlhammer, J. Visual-interactive pre-processing of multivariate time series data. Computer Graphics Forum Vol. 38, No. 3, 401-412, 2019.
[18]
Bernard, J.; Hutter, M.; Zeppelzauer, M.; Fellner, D.; Sedlmair, M. Comparing visual-interactive labeling with active learning: An experimental study. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 298-308, 2018.
[19]
Bernard, J.; Zeppelzauer, M.; Lehmann, M.; Müller, M.; Sedlmair, M. Towards user-centered active learning algorithms. Computer Graphics Forum Vol. 37, No. 3, 121-132, 2018.
[20]
Bors, C.; Gschwandtner, T.; Miksch, S. Capturing and visualizing provenance from data wrangling. IEEE Computer Graphics and Applications Vol. 39, No. 6, 61-75, 2019.
[21]
Chen, C. J.; Yuan, J.; Lu, Y. F.; Liu, Y.; Su, H.; Yuan, S. T.; Liu, S. X. OoDAnalyzer: Interactiveanalysis of out-of-distribution samples. IEEE Transactions on Visualization and Computer Graphics , 2020.
[22]
Dextras-Romagnino, K.; Munzner, T. Segmen++ tifier: Interactive refinement of clickstream data. Computer Graphics Forum Vol. 38, No. 3, 623-634, 2019.
[23]
Gschwandtner, T.; Erhart, O. Know your enemy: Identifying quality problems of time series data. In: Proceedings of the IEEE Pacific Visualization Symposium, 205-214, 2018.
[24]
Halter, G.; Ballester-Ripoll, R.; Flueckiger, B.; Pajarola, R. VIAN: A visual annotation tool for film analysis. Computer Graphics Forum Vol. 38, No. 3, 119-129, 2019.
[25]
Heimerl, F.; Koch, S.; Bosch, H.; Ertl, T. Visual classifier training for text document retrieval. IEEE Transactions on Visualization and Computer Graphics Vol. 18, No. 12, 2839-2848, 2012.
[26]
Höferlin, B.; Netzel, R.; Höferlin, M.; Weiskopf, D.; Heidemann, G. Inter-active learning of ad-hoc classifiers for video visual analytics. In: Proceedings of the Conference on Visual Analytics Science and Technology, 23-32, 2012.
[27]
Soares Junior, A.; Renso, C.; Matwin, S. ANALYTiC: An active learning system for trajectory classification. IEEE Computer Graphics and Applications Vol. 37, No. 5, 28-39, 2017.
[28]
Khayat, M.; Karimzadeh, M.; Zhao, J. Q.; Ebert, D. S. VASSL: A visual analytics toolkit for social spambot labeling. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 1, 874-883, 2020.
[29]
Kurzhals, K.; Hlawatsch, M.; Seeger, C.; Weiskopf, D. Visual analytics for mobile eye tracking. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 1, 301-310, 2017.
[30]
Lekschas, F.; Peterson, B.; Haehn, D.; Ma, E.; Gehlenborg, N.; Pfister, H. 2019. PEAX: interactive visual pattern search in sequential data using unsupervised deep representation learning. bioRxiv 597518, , 2020.
[31]
Liu, S. X.; Chen, C. J.; Lu, Y. F.; Ouyang, F. X.; Wang, B. An interactive method to improve crowdsourced annotations. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 235-245, 2019.
[32]
Moehrmann, J.; Bernstein, S.; Schlegel, T.; Werner, G.; Heidemann, G. Improving the usability of hierarchical representations for interactively labeling large image data sets. In: Human-Computer Interaction. Design and Development Approaches. Lecture Notes in Computer Science, Vol. 6761. Jacko, J. A. Ed. Springer Berlin, 618-627, 2011.
[33]
Paiva, J. G. S.; Schwartz, W. R.; Pedrini, H.; Minghim, R. An approach to supporting incremental visual data classification. IEEE Transactions on Visualization and Computer Graphics Vol. 21, No. 1, 4-17, 2015.
[34]
Park, J. H.; Nadeem, S.; Boorboor, S.; Marino, J.; Kaufman, A. E. CMed: Crowd analytics for medical imaging data. IEEE Transactions on Visualization and Computer Graphics , 2019.
[35]
Park, J. H.; Nadeem, S.; Mirhosseini, S.; Kaufman, A. C2A: Crowd consensus analytics for virtual colonoscopy. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 21-30, 2016.
[36]
De Rooij, O.; van Wijk, J. J.; Worring, M. MediaTable: Interactive categorization of multimedia collections. IEEE Computer Graphics and Applications Vol. 30, No. 5, 42-51, 2010.
[37]
Snyder, L. S.; Lin, Y. S.; Karimzadeh, M.; Goldwasser, D.; Ebert, D. S. Interactive learning for identifying relevant tweets to support real-time situational awareness. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 1, 558-568, 2020.
[38]
Sperrle, F.; Sevastjanova, R.; Kehlbeck, R.; El-Assady, M. VIANA: Visual interactive annotation of argumentation. In: Proceedings of the Conference on Visual Analytics Science and Technology, 11-22, 2019.
[39]
Stein, M.; Janetzko, H.; Breitkreutz, T.; Seebacher, D.; Schreck, T.; Grossniklaus, M.; Couzin, I. D.; Keim, D. A. Director’s cut: Analysis and annotation of soccer matches. IEEE Computer Graphics and Applications Vol. 36, No. 5, 50-60, 2016.
[40]
Wang, X. M.; Chen, W.; Chou, J. K.; Bryan, C.; Guan, H. H.; Chen, W. L.; Pan, R.; Ma, K.-L. GraphProtector: A visual interface for employing and assessing multiple privacy preserving graph algorithms. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 193-203, 2019.
[41]
Wang, X. M.; Chou, J. K.; Chen, W.; Guan, H. H.; Chen, W. L.; Lao, T. Y.; Ma, K.-L. A utility-aware visual approach for anonymizing multi-attribute tabular data. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 351-360, 2018.
[42]
Willett, W.; Ginosar, S.; Steinitz, A.; Hartmann, B.; Agrawala, M. Identifying redundancy and exposing provenance in crowdsourced data analysis. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 12, 2198-2206, 2013.
[43]
Xiang, S.; Ye, X.; Xia, J.; Wu, J.; Chen, Y.; Liu, S. Interactive correction of mislabeled training data. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 57-68, 2019.
[44]
Ingram, S.; Munzner, T.; Irvine, V.; Tory, M.; Bergner, S.; Möller, T. DimStiller: Workflows for dimensional analysis and reduction. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 3-10, 2010.
[45]
Krause, J.; Perer, A.; Bertini, E. INFUSE: Interactive feature selection for predictive modeling of high dimensional data. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 12, 1614-1623, 2014.
[46]
May, T.; Bannach, A.; Davey, J.; Ruppert, T.; Kohlhammer, J. Guiding feature subset selection with an interactive visualization. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 111-120, 2011.
[47]
Muhlbacher, T.; Piringer, H. A partition-based framework for building and validating regression models. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 12, 1962-1971, 2013.
[48]
Seo, J.; Shneiderman, B. A rank-by-feature framework for interactive exploration of multidimensional data. Information Visualization Vol. 4, No. 2, 96-113, 2005.
[49]
Tam, G. K. L.; Fang, H.; Aubrey, A. J.; Grant, P. W.; Rosin, P. L.; Marshall, D.; Chen, M. Visualization of time-series data in parameter space for understanding facial dynamics. Computer Graphics Forum Vol. 30, No. 3, 901-910, 2011.
[50]
Broeksema, B.; Baudel, T.; Telea, A.; Crisafulli, P. Decision exploration lab: A visual analytics solution for decision management. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 12, 1972-1981, 2013.
[51]
Cashman, D.; Patterson, G.; Mosca, A.; Watts, N.; Robinson, S.; Chang, R. RNNbow: Visualizing learning via backpropagation gradients in RNNs. IEEE Computer Graphics and Applications Vol. 38, No. 6, 39-50, 2018.
[52]
Collaris, D.; van Wijk, J. J. ExplainExplore: Visual exploration of machine learning explanations. In: Proceedings of the IEEE Pacific Visualization Symposium, 26-35, 2020.
[53]
Eichner, C.; Schumann, H.; Tominski, C. Making parameter dependencies of time-series segmentation visually understandable. Computer Graphics Forum Vol. 39, No. 1, 607-622, 2020.
[54]
Ferreira, N.; Lins, L.; Fink, D.; Kelling, S.; Wood, C.; Freire, J.; Silva, C. BirdVis: Visualizing and understanding bird populations. IEEE Transactions on Visualization and Computer Graphics Vol. 17, No. 12, 2374-2383, 2011.
[55]
Fröhler, B.; Möller, T.; Heinzl, C. GEMSe: Visualization-guided exploration of multi-channel segmentation algorithms. Computer Graphics Forum Vol. 35, No. 3, 191-200, 2016.
[56]
Hohman, F.; Park, H.; Robinson, C.; Polo Chau, D. H. Summit: Scaling deep learning interpretability by visualizing activation and attribution summarizations. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 1, 1096-1106, 2020.
[57]
Jaunet, T.; Vuillemot, R.; Wolf, C. DRLViz: Understanding decisions and memory in deep reinforcement learning. Computer Graphics Forum Vol. 39, No. 3, 49-61, 2020.
[58]
Jean, C. S.; Ware, C.; Gamble, R. Dynamic change arcs to explore model forecasts. Computer Graphics Forum Vol. 35, No. 3, 311-320, 2016.
[59]
Kahng, M.; Andrews, P. Y.; Kalro, A.; Chau, D. H. ActiVis: Visual exploration of industry-scale deep neural network models. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 88-97, 2018.
[60]
Kahng, M.; Thorat, N.; Chau, D. H. P.; Viegas, F. B.; Wattenberg, M. GAN lab: Understanding complex deep generative models using interactive visual experimentation. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 310-320, 2019.
[61]
Kwon, B. C.; Anand, V.; Severson, K. A.; Ghosh, S.; Sun, Z. N.; Frohnert, B. I.; Lundgren, M.; Ng, K. DPVis: Visual analytics with hidden Markov models for disease progression pathways. IEEE Transactions on Visualization and Computer Graphics , 2020.
[62]
Liu, M. C.; Shi, J. X.; Li, Z.; Li, C. X.; Zhu, J.; Liu, S. X. Towards better analysis of deep convolutional neural networks. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 1, 91-100, 2017.
[63]
Liu, S. S.; Li, Z. M.; Li, T.; Srikumar, V.; Pascucci, V.; Bremer, P. T. NLIZE: A perturbation-driven visual interrogation tool for analyzing and interpreting natural language inference models. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 651-660, 2019.
[64]
Migut, M.; van Gemert, J.; Worring, M. Interactive decision making using dissimilarity to visually represented prototypes. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 141-149, 2011.
[65]
Ming, Y.; Cao, S.; Zhang, R.; Li, Z.; Chen, Y.; Song, Y.; Qu, H. Understanding hidden memories of recurrent neural networks. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 13-24, 2017.
[66]
Ming, Y.; Qu, H. M.; Bertini, E. RuleMatrix: Visualizing and understanding classifiers with rules. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 342-352, 2019.
[67]
Murugesan, S.; Malik, S.; Du, F.; Koh, E.; Lai, T. M. DeepCompare: Visual and interactive comparison of deep learning model performance. IEEE Computer Graphics and Applications Vol. 39, No. 5, 47-59, 2019.
[68]
Nie, S.; Healey, C.; Padia, K.; Leeman-Munk, S.; Benson, J.; Caira, D.; Sethi, S.; Devarajan, R. Visualizing deep neural networks for text analytics. In: Proceedings of the IEEE Pacific Visualization Symposium, 180-189, 2018.
[69]
Rauber, P. E.; Fadel, S. G.; Falcao, A. X.; Telea, A. C. Visualizing the hidden activity of artificial neural networks. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 1, 101-110, 2017.
[70]
Rohlig, M.; Luboschik, M.; Kruger, F.; Kirste, T.; Schumann, H.; Bogl, M.; Alsallakh, B.; Miksch. S. Supporting activity recognition by visual analytics. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 41-48, 2015.
[71]
Scheepens, R.; Michels, S.; van de Wetering, H.; van Wijk, J. J. Rationale visualization for safety and security. Computer Graphics Forum Vol. 34, No. 3, 191-200, 2015.
[72]
Shen, Q.; Wu, Y.; Jiang, Y.; Zeng, W.; LAU, A. K. H.; Vianova, A.; Qu, H. Visual interpretation of recurrent neural network on multi-dimensional time-series forecast. In: Proceedings of the IEEE Pacific Visualization Symposium, 61-70, 2020.
[73]
Strobelt, H.; Gehrmann, S.; Pfister, H.; Rush, A. M. LSTMVis: A tool for visual analysis of hidden state dynamics in recurrent neural networks. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 667-676, 2018.
[74]
Wang, J. P.; Gou, L.; Yang, H.; Shen, H. W. GANViz: A visual analytics approach to understand the adversarial game. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 6, 1905-1917, 2018.
[75]
Wang, J. P.; Gou, L.; Zhang, W.; Yang, H.; Shen, H. W. DeepVID: Deep visual interpretation and diagnosis for image classifiers via knowledge distillation. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 6, 2168-2180, 2019.
[76]
Wang, J.; Zhang, W.; Yang, H. SCANViz: Interpreting the symbol-concept association captured by deep neural networks through visual analytics. In: Proceedings of the IEEE Pacific Visualization Symposium, 51-60, 2020.
[77]
Wongsuphasawat, K.; Smilkov, D.; Wexler, J.; Wilson, J.; Mane, D.; Fritz, D.; Krishnan, D.; Viegas, F. B.; Wattenberg, M. Visualizing dataflow graphs of deep learning models in TensorFlow. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 1-12, 2018.
[78]
Zhang, C.; Yang, J.; Zhan, F. B.; Gong, X.; Brender, J. D.; Langlois, P. H.; Barlowe, S.; Zhao, Y. A visual analytics approach to high-dimensional logistic regression modeling and its application to an environmental health study. In: Proceedings of the IEEE Pacific Visualization Symposium, 136-143, 2016.
[79]
Zhao, X.; Wu, Y. H.; Lee, D. L.; Cui, W. W. iForest: Interpreting random forests via visual analytics. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 407-416, 2019.
[80]
Ahn, Y.; Lin, Y. R. FairSight: Visual analytics for fairness in decision making. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 1, 1086-1095, 2019.
[81]
Alsallakh, B.; Hanbury, A.; Hauser, H.; Miksch, S.; Rauber, A. Visual methods for analyzing probabilistic classification data. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 12, 1703-1712, 2014.
[82]
Bilal, A.; Jourabloo, A.; Ye, M.; Liu, X. M.; Ren, L. 2018. Do convolutional neural networks learn class hierarchy? IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 152-162, 2018.
[83]
Cabrera, A. A.; Epperson, W.; Hohman, F.; Kahng, M.; Morgenstern, J.; Chau, D. H.; FAIRVIS: Visual analytics for discovering intersectional bias in machine learning. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 46-56, 2019.
[84]
Cao, K. L.; Liu, M. C.; Su, H.; Wu, J.; Zhu, J.; Liu, S. X. Analyzing the noise robustness of deep neural networks. IEEE Transactions on Visualization and Computer Graphics , 2020.
[85]
Diehl, A.; Pelorosso, L.; Delrieux, C.; Matković, K.; Ruiz, J.; Gröller, M. E.; Bruckner, S. Albero: A visual analytics approach for probabilistic weather forecasting. Computer Graphics Forum Vol. 36, No. 7, 135-144, 2017.
[86]
Gleicher, M.; Barve, A.; Yu, X. Y.; Heimerl, F. Boxer: Interactive comparison of classifier results. Computer Graphics Forum Vol. 39, No. 3, 181-193, 2020.
[87]
He, W.; Lee, T.-Y.; van Baar, J.; Wittenburg, K.; Shen, H.-W. DynamicsExplorer: Visual analytics for robot control tasks involving dynamics and LSTM-based control policies. In: Proceedings of the IEEE Pacific Visualization Symposium, 36-45, 2020.
[88]
Krause, J.; Dasgupta, A.; Swartz, J.; Aphinyanaphongs, Y.; Bertini, E. A workow for visual diagnostics of binary classifiers using instance-level explanations. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 162-172, 2017.
[89]
Liu, M. C.; Shi, J. X.; Cao, K. L.; Zhu, J.; Liu, S. X. Analyzing the training processes of deep generative models. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 77-87, 2018.
[90]
Liu, S. X.; Xiao, J. N.; Liu, J. L.; Wang, X. T.; Wu, J.; Zhu, J. Visual diagnosis of tree boosting methods. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 163-173, 2018.
[91]
Ma, Y. X.; Xie, T. K.; Li, J. D.; Maciejewski, R. Explaining vulnerabilities to adversarial machine learning through visual analytics. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 1, 1075-1085, 2020.
[92]
Pezzotti, N.; Hollt, T.; van Gemert, J.; Lelieveldt, B. P. F.; Eisemann, E.; Vilanova, A. DeepEyes: Progressive visual analytics for designing deep neural networks. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 98-108, 2018.
[93]
Ren, D. H.; Amershi, S.; Lee, B.; Suh, J.; Williams, J. D. Squares: Supporting interactive performance analysis for multiclass classifiers. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 1, 61-70, 2017.
[94]
Spinner, T.; Schlegel, U.; Schafer, H.; El-Assady, M. explAIner: A visual analytics framework for interactive and explainable machine learning. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 1, 1064-1074, 2020.
[95]
Strobelt, H.; Gehrmann, S.; Behrisch, M.; Perer, A.; Pfister, H.; Rush, A. M. Seq2seq-Vis: A visual debugging tool for sequence-to-sequence models. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 353-363, 2019.
[96]
Wang, J. P.; Gou, L.; Shen, H. W.; Yang, H. DQNViz: A visual analytics approach to understand deep Q-networks. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 288-298, 2019.
[97]
Wexler, J.; Pushkarna, M.; Bolukbasi, T.; Wattenberg, M.; Viegas, F.; Wilson, J. The what-if tool: Interactive probing of machine learning models. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 1, 56-65, 2019.
[98]
Zhang, J. W.; Wang, Y.; Molino, P.; Li, L. Z.; Ebert, D. S. Manifold: A model-agnostic framework for interpretation and diagnosis of machine learning models. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 364-373, 2019.
[99]
Bogl, M.; Aigner, W.; Filzmoser, P.; Lammarsch, T.; Miksch, S.; Rind, A. Visual analytics for model selection in time series analysis. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 12, 2237-2246, 2013.
[100]
Cashman, D.; Perer, A.; Chang, R.; Strobelt, H. Ablate, variate, and contemplate: Visual analytics for discovering neural architectures. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 1, 863-873, 2020.
[101]
Cavallo, M.; Demiralp, Ç. Track xplorer: A system for visual analysis of sensor-based motor activity predictions. Computer Graphics Forum Vol. 37, No. 3, 339-349, 2018.
[102]
Cavallo, M.; Demiralp, C. Clustrophile 2: Guided visual clustering analysis. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 267-276, 2019.
[103]
Das, S.; Cashman, D.; Chang, R.; Endert, A. BEAMES: Interactive multimodel steering, selection, and inspection for regression tasks. IEEE Computer Graphics and Applications Vol. 39, No. 5, 20-32, 2019.
[104]
Dingen, D.; van’t Veer, M.; Houthuizen, P.; Mestrom, E. H. J.; Korsten, E. H. H. M.; Bouwman, A. R. A.; van Wijk. J. J. RegressionExplorer: Interactive exploration of logistic regression models with subgroup analysis. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 246-255, 2019.
[105]
Dou, W. W.; Yu, L.; Wang, X. Y.; Ma, Z. Q.; Ribarsky, W. HierarchicalTopics: Visually exploring large text collections using topic hierarchies. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 12, 2002-2011, 2013.
[106]
El-Assady, M.; Kehlbeck, R.; Collins, C.; Keim, D.; Deussen, O. Semantic concept spaces: Guided topic model refinement using word-embedding projections. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 1, 1001-1011, 2020.
[107]
El-Assady, M.; Sevastjanova, R.; Sperrle, F.; Keim, D.; Collins, C. Progressive learning of topic modeling parameters: A visual analytics framework. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 382-391, 2018.
[108]
El-Assady, M.; Sperrle, F.; Deussen, O.; Keim, D.; Collins, C. Visual analytics for topic model optimization based on user-steerable speculative execution. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 374-384, 2019.
[109]
Kim, H.; Drake, B.; Endert, A.; Park, H. ArchiText: Interactive hierarchical topic modeling. IEEE Transactions on Visualization and Computer Graphics , 2020.
[110]
Kwon, B. C.; Choi, M. J.; Kim, J. T.; Choi, E.; Kim, Y. B.; Kwon, S.; Sun, J.; Choo, J. RetainVis: Visual analytics with interpretable and interactive recurrent neural networks on electronic medical records. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 299-309, 2019.
[111]
Lee, H.; Kihm, J.; Choo, J.; Stasko, J.; Park, H. iVisClustering: An interactive visual document clustering via topic modeling. Computer Graphics Forum Vol. 31, No. 3, 1155-1164, 2012.
[112]
Liu, M. C.; Liu, S. X.; Zhu, X. Z.; Liao, Q. Y.; Wei, F. R.; Pan, S. M. An uncertainty-aware approach for exploratory microblog retrieval. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 1, 250-259, 2016.
[113]
Lowe, T.; Forster, E. C.; Albuquerque, G.; Kreiss, J. P.; Magnor, M. Visual analytics for development and evaluation of order selection criteria for autoregressive processes. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 1, 151-159, 2016.
[114]
MacInnes, J.; Santosa, S.; Wright, W. Visual classification: Expert knowledge guides machine learning. IEEE Computer Graphics and Applications Vol. 30, No. 1, 8-14, 2010.
[115]
Migut, M.; Worring, M. Visual exploration of classification models for risk assessment. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 11-18, 2010.
[116]
Ming, Y.; Xu, P. P.; Cheng, F. R.; Qu, H. M.; Ren, L. ProtoSteer: Steering deep sequence model with prototypes. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 1, 238-248, 2020.
[117]
Muhlbacher, T.; Linhardt, L.; Moller, T.; Piringer, H. TreePOD: Sensitivity-aware selection of Pareto-optimal decision trees. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 174-183, 2018.
[118]
Packer, E.; Bak, P.; Nikkila, M.; Polishchuk, V.; Ship, H. J. Visual analytics for spatial clustering: Using a heuristic approach for guided exploration. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 12, 2179-2188, 2013.
[119]
Piringer, H.; Berger, W.; Krasser, J. HyperMoVal: Interactive visual validation of regression models for real-time simulation. Computer Graphics Forum Vol. 29, No. 3, 983-992, 2010.
[120]
Sacha, D.; Kraus, M.; Bernard, J.; Behrisch, M.; Schreck, T.; Asano, Y.; Keim, D. A. SOMFlow: Guided exploratory cluster analysis with self-organizing maps and analytic provenance. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 120-130, 2018.
[121]
Schultz, T.; Kindlmann, G. L. Open-box spectral clustering: Applications to medical image analysis. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 12, 2100-2108, 2013.
[122]
Van den Elzen, S.; van Wijk, J. J. BaobabView: Interactive construction and analysis of decision trees. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 151-160, 2011.
[123]
Vrotsou, K.; Nordman, A. Exploratory visual sequence mining based on pattern-growth. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 8, 2597-2610, 2019.
[124]
Wang, X. T.; Liu, S. X.; Liu, J. L.; Chen, J. F.; Zhu, J.; Guo, B. N. TopicPanorama: A full picture of relevant topics. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 12, 2508-2521, 2016.
[125]
Yang, W. K.; Wang, X. T.; Lu, J.; Dou, W. W.; Liu, S. X. Interactive steering of hierarchical clustering. IEEE Transactions on Visualization and Computer Graphics , 2020.
[126]
Zhao, K. Y.; Ward, M. O.; Rundensteiner, E. A.; Higgins, H. N. LoVis: Local pattern visualization for model refinement. Computer Graphics Forum Vol. 33, No. 3, 331-340, 2014.
[127]
Alexander, E.; Kohlmann, J.; Valenza, R.; Witmore, M.; Gleicher, M. Serendip: Topic model-driven visual exploration of text corpora. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 173-182, 2014.
[128]
Berger, M.; McDonough, K.; Seversky, L. M. Cite2vec: Citation-driven document exploration via word embeddings. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 1, 691-700,2017.
[129]
Blumenschein, M.; Behrisch, M.; Schmid, S.; Butscher, S.; Wahl, D. R.; Villinger, K.; Renner, B.; Reiterer, H.; Keim, D. A. SMARTexplore: Simplifying high-dimensional data analysis through a table-based visual analytics approach. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 36-47, 2018.
[130]
Bradel, L.; North, C.; House, L. Multi-model semantic interaction for text analytics. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 163-172, 2014.
[131]
Broeksema, B.; Telea, A. C.; Baudel, T. Visual analysis of multi-dimensional categorical data sets. Computer Graphics Forum Vol. 32, No. 8, 158-169, 2013.
[132]
Cao, N.; Sun, J. M.; Lin, Y. R.; Gotz, D.; Liu, S. X.; Qu, H. M. FacetAtlas: Multifaceted visualization for rich text corpora. IEEE Transactions on Visualization and Computer Graphics Vol. 16, No. 6, 1172-1181, 2010.
[133]
Chandrasegaran, S.; Badam, S. K.; Kisselburgh, L.; Ramani, K.; Elmqvist, N. Integrating visual analytics support for grounded theory practice in qualitative text analysis. Computer Graphics Forum Vol. 36, No. 3, 201-212, 2017.
[134]
Chen, S. M.; Andrienko, N.; Andrienko, G.; Adilova, L.; Barlet, J.; Kindermann, J.; Nguyen, P. H.; Thonnard, O.; Turkay, C. LDA ensembles for interactive exploration and categorization of behaviors. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 9, 2775-2792, 2020.
[135]
Correll, M.; Witmore, M.; Gleicher, M. Exploring collections of tagged text for literary scholarship. Computer Graphics Forum Vol. 30, No. 3, 731-740, 2011.
[136]
Dou, W.; Cho, I.; ElTayeby, O.; Choo, J.; Wang, X.; Ribarsky, W.; DemographicVis: Analyzing demographic information based on user generated content. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 57-64,2015.
[137]
El-Assady, M.; Gold, V.; Acevedo, C.; Collins, C.; Keim, D. ConToVi: Multi-party conversation exploration using topic-space views. Computer Graphics Forum Vol. 35, No. 3, 431-440, 2016.
[138]
El-Assady, M.; Sevastjanova, R.; Keim, D.; Collins, C. ThreadReconstructor: Modeling reply-chains to untangle conversational text through visual analytics. Computer Graphics Forum Vol. 37, No. 3, 351-365, 2018.
[139]
Filipov, V.; Arleo, A.; Federico, P.; Miksch, S. CV3: Visual exploration, assessment, and comparison of CVs. Computer Graphics Forum Vol. 38, No. 3, 107-118, 2019.
[140]
Fried, D.; Kobourov, S. G. Maps of computer science. In: Proceedings of the IEEE Pacific Visualization Symposium, 113-120, 2014.
[141]
Fulda, J.; Brehmer, M.; Munzner, T. TimeLineCurator: Interactive authoring of visual timelines from unstructured text. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 1, 300-309, 2016.
[142]
Glueck, M.; Naeini, M. P.; Doshi-Velez, F.; Chevalier, F.; Khan, A.; Wigdor, D.; Brudno, M. PhenoLines: Phenotype comparison visualizations for disease subtyping via topic models. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 371-381, 2018.
[143]
Gorg, C.; Liu, Z. C.; Kihm, J.; Choo, J.; Park, H.; Stasko, J. Combining computational analyses and interactive visualization for document exploration and sensemaking in jigsaw. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 10, 1646-1663, 2013.
[144]
Guo, H.; Laidlaw, D. H. Topic-based exploration and embedded visualizations for research idea generation. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 3, 1592-1607, 2020.
[145]
Heimerl, F.; John, M.; Han, Q.; Koch, S.; Ertl. T. DocuCompass: Effective exploration of document landscapes. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 11-20, 2016.
[146]
Hong, F.; Lai, C.; Guo, H.; Shen, E.; Yuan, X.; Li. S. FLDA: Latent Dirichlet allocation based unsteady flow analysis. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No.12, 2545-2554, 2014.
[147]
Hoque, E.; Carenini, G. ConVis: A visual text analytic system for exploring blog conversations. Computer Graphics Forum Vol. 33, No. 3, 221-230, 2014.
[148]
Hu, M. D.; Wongsuphasawat, K.; Stasko, J. Visualizing social media content with SentenTree. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 1, 621-630, 2017.
[149]
Jänicke, H.; Borgo, R.; Mason, J. S. D.; Chen, M. SoundRiver: Semantically-rich sound illustration. Computer Graphics Forum Vol. 29, No. 2, 357-366, 2010.
[150]
Jänicke, S.; Wrisley, D. J. Interactive visual alignment of medieval text versions. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 127-138, 2017.
[151]
Jankowska, M.; Kefiselj, V.; Milios, E. Relative N-gram signatures: Document visualization at the level of character n-grams. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 103-112, 2012.
[152]
Ji, X. N.; Shen, H. W.; Ritter, A.; Machiraju, R.; Yen, P. Y. Visual exploration of neural document embedding in information retrieval: Semantics and feature selection. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 6, 2181-2192, 2019.
[153]
Kakar, T.; Qin, X.; Rundensteiner, E. A.; Harrison, L.; Sahoo, S. K.; De, S. DIVA: Exploration and validation of hypothesized drug-drug interactions. Computer Graphics Forum Vol. 38, No. 3, 95-106, 2019.
[154]
Kim, H.; Choi, D.; Drake, B.; Endert, A.; Park, H. TopicSifter: Interactive search space reduction through targeted topic modeling. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 35-45, 2019.
[155]
Kim, M.; Kang, K.; Park, D.; Choo, J.; Elmqvist, N. TopicLens: Efficient multi-level visual topic exploration of large-scale document collections. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 1, 151-160, 2017.
[156]
Kochtchi, A.; von Landesberger, T.; Biemann, C. Networks of names: Visual exploration and semi-automatic tagging of social networks from newspaper articles. Computer Graphics Forum Vol. 33, No. 3, 211-220, 2014.
[157]
Li, M. Z.; Choudhury, F.; Bao, Z. F.; Samet, H.; Sellis, T. ConcaveCubes: Supporting cluster-based geographical visualization in large data scale. Computer Graphics Forum Vol. 37, No. 3, 217-228, 2018.
[158]
Liu, S.; Wang, B.; Thiagarajan, J. J.; Bremer, P. T.; Pascucci, V. Visual exploration of high-dimensional data through subspace analysis and dynamic projections. Computer Graphics Forum Vol. 34, No. 3, 271-280, 2015.
[159]
Liu, S.; Wang, X.; Chen, J.; Zhu, J.; Guo, B. TopicPanorama: A full picture of relevant topics. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 183-192, 2014.
[160]
Liu, X.; Xu, A.; Gou, L.; Liu, H.; Akkiraju, R.; Shen, H. W. SocialBrands: Visual analysis of public perceptions of brands on social media. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 71-80, 2016.
[161]
Oelke, D.; Strobelt, H.; Rohrdantz, C.; Gurevych, I.; Deussen, O. Comparative exploration of document collections: A visual analytics approach. Computer Graphics Forum Vol. 33, No. 3, 201-210, 2014.
[162]
Park, D.; Kim, S.; Lee, J.; Choo, J.; Diakopoulos, N.; Elmqvist, N. ConceptVector: text visual analytics via interactive lexicon building using word embedding. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 361-370, 2018.
[163]
Paulovich, F. V.; Toledo, F. M. B.; Telles, G. P.; Minghim, R.; Nonato, L. G. Semantic wordification of document collections. Computer Graphics Forum Vol. 31, No. 3pt3, 1145-1153, 2012.
[164]
Shen, Q. M.; Zeng, W.; Ye, Y.; Arisona, S. M.; Schubiger, S.; Burkhard, R.; Qu, H. StreetVizor: Visual exploration of human-scale urban forms based on street views. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 1004-1013, 2018.
[165]
Von Landesberger, T.; Basgier, D.; Becker, M. Comparative local quality assessment of 3D medical image segmentations with focus on statistical shape model-based algorithms. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 12, 2537-2549, 2016.
[166]
Wall, E.; Das, S.; Chawla, R.; Kalidindi, B.; Brown, E. T.; Endert, A. Podium: Ranking data using mixed-initiative visual analytics. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 288-297, 2018.
[167]
Xie, X.; Cai, X. W.; Zhou, J. P.; Cao, N.; Wu, Y. C. A semantic-based method for visualizing large image collections. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 7, 2362-2377,2019.
[168]
Zhang, L.; Huang, H. Hierarchical narrative collage for digital photo album. Computer Graphics Forum Vol. 31, No. 7, 2173-2181, 2012.
[169]
Zhao, J.; Chevalier, F.; Collins, C.; Balakrishnan, R. Facilitating discourse analysis with interactive visualization. IEEE Transactions on Visualization and Computer Graphics Vol. 18, No. 12, 2639-2648,2012.
[170]
Alsakran, J.; Chen, Y.; Luo, D. N.; Zhao, Y.; Yang, J.; Dou, W. W.; Liu, S. Real-time visualization of streaming text with a force-based dynamic system. IEEE Computer Graphics and Applications Vol. 32, No. 1, 34-45, 2012.
[171]
Alsakran, J.; Chen, Y.; Zhao, Y.; Yang, J.; Luo, D. STREAMIT: Dynamic visualization and interactive exploration of text streams. In: Proceedings of the IEEE Pacific Visualization Symposium, 131-138, 2011.
[172]
Andrienko, G.; Andrienko, N.; Anzer, G.; Bauer, P.; Budziak, G.; Fuchs, G.; Hecker, D.; Weber, H.; Wrobel, S. Constructing spaces and times for tactical analysis in football. IEEE Transactions on Visualization and Computer Graphics , 2019.
[173]
Andrienko, G.; Andrienko, N.; Bremm, S.; Schreck, T.; von Landesberger, T.; Bak, P.; Keim, D. Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns. Computer Graphics Forum Vol. 29, No. 3, 913-922, 2010.
[174]
Andrienko, G.; Andrienko, N.; Hurter, C.; Rinzivillo, S.; Wrobel, S. Scalable analysis of movement data for extracting and exploring significant places. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 7, 1078-1094, 2013.
[175]
Blascheck, T.; Beck, F.; Baltes, S.; Ertl, T.; Weiskopf, D. Visual analysis and coding of data-rich user behavior. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 141-150, 2016.
[176]
Bögl, M.; Filzmoser, P.; Gschwandtner, T.; Lammarsch, T.; Leite, R. A.; Miksch, S.; Rind, A. Cycle plot revisited: Multivariate outlier detection using a distance-based abstraction. Computer Graphics Forum Vol. 36, No. 3, 227-238, 2017.
[177]
Bosch, H.; Thom, D.; Heimerl, F.; Puttmann, E.; Koch, S.; Kruger, R.; Worner, M.; Ertl, T. ScatterBlogs2: real-time monitoring of microblog messages through user-guided filtering. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 12, 2022-2031, 2013.
[178]
Buchmüller, J.; Janetzko, H.; Andrienko, G.; Andrienko, N.; Fuchs, G.; Keim, D. A. Visual analytics for exploring local impact of air traffic. Computer Graphics Forum Vol. 34, No. 3, 181-190, 2015.
[179]
Cao, N.; Lin, C. G.; Zhu, Q. H.; Lin, Y. R.; Teng, X.; Wen, X. D. Voila: Visual anomaly detection and monitoring with streaming spatiotemporal data. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 23-33, 2018.
[180]
Cao, N.; Lin, Y. R.; Sun, X. H.; Lazer, D.; Liu, S. X.; Qu, H. M. Whisper: Tracing the spatiotemporal process of information diffusion in real time. IEEE Transactions on Visualization and Computer Graphics Vol. 18, No. 12, 2649-2658, 2012.
[181]
Cao, N.; Shi, C. L.; Lin, S.; Lu, J.; Lin, Y. R.; Lin, C. Y. TargetVue: Visual analysis of anomalous user behaviors in online communication systems. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 1, 280-289, 2016.
[182]
Chae, J.; Thom, D.; Bosch, H.; Jang, Y.; Maciejewski, R.; Ebert, D. S.; Ertl, T. Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 143-152, 2012.
[183]
Chen, Q.; Yue, X. W.; Plantaz, X.; Chen, Y. Z.; Shi, C. L.; Pong, T. C.; Qu, H. ViSeq: Visual analytics of learning sequence in massive open online courses. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 3, 1622-1636, 2020.
[184]
Chen, S.; Chen, S.; Lin, L.; Yuan, X.; Liang, J.; Zhang, X. E-map: A visual analytics approach for exploring significant event evolutions in social media. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 36-47, 2017.
[185]
Chen, S.; Chen, S.; Wang, Z.; Liang, J.; Yuan, X.; Cao, N.; Wu, Y. D-Map: Visual analysis of egocentric information difiusion patterns in social media. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 41-50, 2016.
[186]
Chen, S. M.; Yuan, X. R.; Wang, Z. H.; Guo, C.; Liang, J.; Wang, Z. C.; Zhang, X.; Zhang, J. Interactive visual discovering of movement patterns from sparsely sampled geo-tagged social media data. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 1, 270-279, 2016.
[187]
Chen, Y.; Chen, Q.; Zhao, M.; Boyer, S.; Veeramachaneni, K.; Qu, H. DropoutSeer: Visualizing learning patterns in massive open online courses for dropout reasoning and prediction. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 111-120, 2016.
[188]
Chen, Y. Z.; Xu, P. P.; Ren, L. Sequence synopsis: Optimize visual summary of temporal event data. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 45-55, 2018.
[189]
Chu, D.; Sheets, D. A.; Zhao, Y.; Wu, Y.; Yang, J.; Zheng, M.; Chen, G. Visualizing hidden themes of taxi movement with semantic transformation. In: Proceedings of the IEEE Pacific Visualization Symposium, 137-144, 2014.
[190]
Cui, W. W.; Liu, S. X.; Tan, L.; Shi, C. L.; Song, Y. Q.; Gao, Z. K.; Qu, H. M.; Tong, X. TextFlow: Towards better understanding of evolving topics in text. IEEE Transactions on Visualization and Computer Graphics Vol. 17, No. 12, 2412-2421,2011.
[191]
Cui, W. W.; Liu, S. X.; Wu, Z. F.; Wei, H. How hierarchical topics evolve in large text corpora. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 12, 2281-2290, 2014.
[192]
Di Lorenzo, G.; Sbodio, M.; Calabrese, F.; Berlingerio, M.; Pinelli, F.; Nair, R. AllAboard: Visual exploration of cellphone mobility data to optimise public transport. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 2, 1036-1050, 2016.
[193]
Dou, W.; Wang, X.; Chang, R.; Ribarsky, W. ParallelTopics: A probabilistic approach to exploring document collections. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 231-240, 2011.
[194]
Dou, W.; Wang, X.; Skau, D.; Ribarsky, W.; Zhou, M. X. Leadline: Interactive visual analysis of text data through event identification and exploration. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 93-102, 2012.
[195]
Du, F.; Plaisant, C.; Spring, N.; Shneiderman, B. EventAction: Visual analytics for temporal event sequence recommendation. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 61-70, 2016.
[196]
El-Assady, M.; Sevastjanova, R.; Gipp, B.; Keim, D.; Collins, C. NEREx: Named-entity relationship exploration in multi-party conversations. Computer Graphics Forum Vol. 36, No. 3, 213-225, 2017.
[197]
Fan, M. M.; Wu, K.; Zhao, J.; Li, Y.; Wei, W.; Truong, K. N. VisTA: Integrating machine intelligence with visualization to support the investigation of think-aloud sessions. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 1, 343-352, 2020.
[198]
Ferreira, N.; Poco, J.; Vo, H. T.; Freire, J.; Silva, C. T. Visual exploration of big spatio-temporal urban data: A study of New York City taxi trips. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 12, 2149-2158, 2013.
[199]
Gobbo, B.; Balsamo, D.; Mauri, M.; Bajardi, P.; Panisson, A.; Ciuccarelli, P. Topic Tomographies (TopTom): A visual approach to distill information from media streams. Computer Graphics Forum Vol. 38, No. 3, 609-621, 2019.
[200]
Gotz, D.; Stavropoulos, H. DecisionFlow: Visual analytics for high-dimensional temporal event sequence data. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 12, 1783-1792, 2014.
[201]
Guo, S. N.; Jin, Z. C.; Gotz, D.; Du, F.; Zha, H. Y.; Cao, N. Visual progression analysis of event sequence data. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 417-426, 2019.
[202]
Guo, S. N.; Xu, K.; Zhao, R. W.; Gotz, D.; Zha, H. Y.; Cao, N. EventThread: Visual summarization and stage analysis of event sequence data. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 56-65, 2018.
[203]
Gutenko, I.; Dmitriev, K.; Kaufman, A. E.; Barish, M. A. AnaFe: Visual analytics of image-derived temporal features: Focusing on the spleen. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 1, 171-180, 2017.
[204]
Havre, S.; Hetzler, E.; Whitney, P.; Nowell, L. ThemeRiver: Visualizing thematic changes in large document collections. IEEE Transactions on Visualization and Computer Graphics Vol. 8, No. 1, 9-20, 2002.
[205]
Heimerl, F.; Han, Q.; Koch, S.; Ertl, T. CiteRivers: Visual analytics of citation patterns. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 1, 190-199, 2016.
[206]
Itoh, M.; Toyoda, M.; Zhu, C. Z.; Satoh, S.; Kitsuregawa, M. Image flows visualization for inter-media comparison. In: Proceedings of the IEEE Pacific Visualization Symposium, 129-136, 2014.
[207]
Itoh, M.; Yoshinaga, N.; Toyoda, M.; Kitsuregawa, M. Analysis and visualization of temporal changes in bloggers’ activities and interests. In: Proceedings of the IEEE Pacific Visualization Symposium, 57-64, 2012.
[208]
Kamaleswaran, R.; Collins, C.; James, A.; McGregor, C. PhysioEx: Visual analysis of physiological event streams. Computer Graphics Forum Vol. 35, No. 3, 331-340, 2016.
[209]
Karduni, A.; Cho, I.; Wessel, G.; Ribarsky, W.; Sauda, E.; Dou, W. W. Urban space explorer: A visual analytics system for urban planning. IEEE Computer Graphics and Applications Vol. 37, No. 5, 50-60, 2017.
[210]
Krueger, R.; Han, Q.; Ivanov, N.; Mahtal, S.; Thom, D.; Pfister, H.; Ertl, T. Bird’s-eye-large-scale visual analytics of city dynamics using social location data. Computer Graphics Forum Vol. 38, No. 3, 595-607, 2019.
[211]
Krueger, R.; Thom, D.; Ertl, T. Visual analysis of movement behavior using web data for context enrichment. In: Proceedings of the IEEE Pacific Visualization Symposium, 193-200, 2014.
[212]
Krueger, R.; Thom, D.; Ertl, T. Semantic enrichment of movement behavior with foursquare—A visual analytics approach. IEEE Transactions on Visualization and Computer Graphics Vol. 21, No. 8, 903-915, 2015.
[213]
Lee, C.; Kim, Y.; Jin, S.; Kim, D.; Maciejewski, R.; Ebert, D.; Ko, S. A visual analytics system for exploring, monitoring, and forecasting road traffic congestion. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 11, 3133-3146, 2020.
[214]
Leite, R. A.; Gschwandtner, T.; Miksch, S.; Kriglstein, S.; Pohl, M.; Gstrein, E.; Kuntner, J. EVA: Visual analytics to identify fraudulent events. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 330-339, 2018.
[215]
Li, J.; Chen, S. M.; Chen, W.; Andrienko, G.; Andrienko, N. Semantics-space-time cube. A conceptual framework for systematic analysis of texts in space and time. IEEE Transactions on Visualization and Computer Graphics, Vol. 26, No. 4, 1789-1806, 2019.
[216]
Li, Q.; Wu, Z. M.; Yi, L. L.; Kristanto, S. N.; Qu, H. M.; Ma, X. J. WeSeer: Visual analysis for better information cascade prediction of WeChat articles. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 2, 1399-1412, 2020.
[217]
Li, Z. Y.; Zhang, C. H.; Jia, S. C.; Zhang, J. W. Galex: Exploring the evolution and intersection of disciplines. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 1, 1182-1192, 2019.
[218]
Liu, H.; Jin, S. C.; Yan, Y. Y.; Tao, Y. B.; Lin, H. Visual analytics of taxi trajectory data via topical sub-trajectories. Visual Informatics Vol. 3, No. 3, 140-149, 2019.
[219]
Liu, S. X.; Yin, J. L.; Wang, X. T.; Cui, W. W.; Cao, K. L.; Pei, J. Online visual analytics of text streams. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 11, 2451-2466, 2016.
[220]
Liu, S.; Zhou, M. X.; Pan, S.; Song, Y.; Qian, W.; Cai, W.; Lian, X. TIARA: Interactive, topic-based visual text summarization and analysis. ACM Transactions on Intelligent Systems and Technology Vol. 3, No.2, Article No. 25, 2012.
[221]
Liu, Z. C.; Kerr, B.; Dontcheva, M.; Grover, J.; Hoffman, M.; Wilson, A. CoreFlow: Extracting and visualizing branching patterns from event sequences. Computer Graphics Forum Vol. 36, No. 3, 527-538, 2017.
[222]
Liu, Z.; Wang, Y.; Dontcheva, M.; Hofiman, M.; Walker, S.; Wilson, A. Patterns and sequences: Interactive exploration of clickstreams to understand common visitor paths. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No.1, 321-330, 2017.
[223]
Lu, Y. F.; Steptoe, M.; Burke, S.; Wang, H.; Tsai, J. Y.; Davulcu, H.; Montgomery, D.; Corman, S. R.; Maciejewski, R. Exploring evolving media discourse through event cueing. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 1, 220-229, 2016.
[224]
Lu, Y. F.; Wang, F.; Maciejewski, R. Business intelligence from social media: A study from the VAST box office challenge. IEEE Computer Graphics and Applications Vol. 34, No. 5, 58-69, 2014.
[225]
Lu, Y. F.; Wang, H.; Landis, S.; Maciejewski, R. A visual analytics framework for identifying topic drivers in media events. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 9, 2501-2515, 2018.
[226]
Luo, D. N.; Yang, J.; Krstajic, M.; Ribarsky, W.; Keim, D. A. EventRiver: Visually exploring text collections with temporal references. IEEE Transactions on Visualization and Computer Graphics Vol. 18, No. 1, 93-105, 2012.
[227]
Maciejewski, R.; Hafen, R.; Rudolph, S.; Larew, S. G.; Mitchell, M. A.; Cleveland, W. S.; Ebert, D. S. Forecasting hotspots: A predictive analytics approach. IEEE Transactions on Visualization and Computer Graphics Vol. 17, No. 4, 440-453, 2011.
[228]
Malik, A.; Maciejewski, R.; Towers, S.; McCullough, S.; Ebert, D. S. Proactive spatiotemporal resource allocation and predictive visual analytics for community policing and law enforcement. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 12, 1863-1872, 2014.
[229]
Miranda, F.; Doraiswamy, H.; Lage, M.; Zhao, K.; Goncalves, B.; Wilson, L.; Hsieh, M.; Silva, C. T. Urban pulse: Capturing the rhythm of cities. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 1, 791-800, 2017.
[230]
Purwantiningsih, O.; Sallaberry, A.; Andary, S.; Seilles, A.; Azfie, J. Visual analysis of body movement in serious games for healthcare. In: Proceedings of the IEEE Pacific Visualization Symposium, 229-233, 2016.
[231]
Riehmann, P.; Kiesel, D.; Kohlhaas, M.; Froehlich, B. Visualizing a thinker’s life. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 4, 1803-1816, 2019.
[232]
Sacha, D.; Al-Masoudi, F.; Stein, M.; Schreck, T.; Keim, D. A.; Andrienko, G.; Janetzko, H. Dynamic visual abstraction of soccer movement. Computer Graphics Forum Vol. 36, No. 3, 305-315, 2017.
[233]
Sarikaya, A.; Correli, M.; Dinis, J. M.; O’Connor, D. H.; Gleicher, M. Visualizing co-occurrence of events in populations of viral genome sequences. Computer Graphics Forum Vol. 35, No. 3, 151-160, 2016.
[234]
Shi, C. L.; Wu, Y. C.; Liu, S. X.; Zhou, H.; Qu, H. M. LoyalTracker: Visualizing loyalty dynamics in search engines. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 12, 1733-1742, 2014.
[235]
Steiger, M.; Bernard, J.; Mittelstädt, S.; Lücke-Tieke, H.; Keim, D.; May, T.; Kohlhammer, J. Visual analysis of time-series similarities for anomaly detection in sensor networks. Computer Graphics Forum Vol. 33, No. 3, 401-410, 2014.
[236]
Stopar, L.; Skraba, P.; Grobelnik, M.; Mladenic, D. StreamStory: Exploring multivariate time series on multiple scales. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 4, 1788-1802, 2019.
[237]
Sultanum, N.; Singh, D.; Brudno, M.; Chevalier, F. Doccurate: A curation-based approach for clinical text visualization. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 142-151,2019.
[238]
Sun, G. D.; Wu, Y. C.; Liu, S. X.; Peng, T. Q.; Zhu, J. J. H.; Liang, R. H. EvoRiver: Visual analysis of topic coopetition on social media. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 12, 1753-1762, 2014.
[239]
Sung, C. Y.; Huang, X. Y.; Shen, Y. C.; Cherng, F. Y.; Lin, W. C.; Wang, H. C. Exploring online learners’ interactive dynamics by visually analyzing their time-anchored comments. Computer Graphics Forum Vol. 36, No. 7, 145-155, 2017.
[240]
Thom, D.; Bosch, H.; Koch, S.; Wörner, M.; Ertl, T. Spatiotemporal anomaly detection through visual analysis of geolocated Twitter messages. In: Proceedings of the IEEE Pacific Visualization Symposium, 41-48, 2012.
[241]
Thom, D.; Kruger, R.; Ertl, T. Can twitter save lives? A broad-scale study on visual social media analytics for public safety. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 7, 1816-1829, 2016.
[242]
Tkachev, G.; Frey, S.; Ertl, T. Local prediction models for spatiotemporal volume visualization. IEEE Transactions on Visualization and Computer Graphics , 2019.
[243]
Vehlow, C.; Beck, F.; Auwärter, P.; Weiskopf, D. Visualizing the evolution of communities in dynamic graphs. Computer Graphics Forum Vol. 34, No. 1, 277-288, 2015.
[244]
Von Landesberger, T.; Brodkorb, F.; Roskosch, P.; Andrienko, N.; Andrienko, G.; Kerren, A. MobilityGraphs: Visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 1, 11-20, 2016.
[245]
Wang, X.; Dou, W.; Ma, Z.; Villalobos, J.; Chen, Y.; Kraft, T.; Ribarsky, W. I-SI: Scalable architecture for analyzing latent topical-level information from social media data. Computer Graphics Forum Vol. 31, No. 3, 1275-1284, 2012.
[246]
Wang, X.; Liu, S.; Chen, Y.; Peng, T.-Q.; Su, J.; Yang, J.; Guo, B. How ideas flow across multiple social groups. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 51-60, 2016.
[247]
Wang, Y.; Haleem, H.; Shi, C. L.; Wu, Y. H.; Zhao, X.; Fu, S. W.; Qu, H. Towards easy comparison of local businesses using online reviews. Computer Graphics Forum Vol. 37, No. 3, 63-74, 2018.
[248]
Wei, F. R.; Liu, S. X.; Song, Y. Q.; Pan, S. M.; Zhou, M. X.; Qian, W. H.; Shi, L.; Tan, L.; Zhang, Q. TIARA: A visual exploratory text analytic system. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 153-162, 2010.
[249]
Wei, J.; Shen, Z.; Sundaresan, N.; Ma, K.-L. Visual cluster exploration of web clickstream data. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 3-12, 2012.
[250]
Wu, A. Y.; Qu, H. M. Multimodal analysis of video collections: Visual exploration of presentation techniques in TED talks. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 7, 2429-2442, 2020.
[251]
Wu, W.; Zheng, Y.; Cao, N.; Zeng, H.; Ni, B.; Qu, H.; Ni, L. M. MobiSeg: Interactive region segmentation using heterogeneous mobility data. In: Proceedings of the IEEE Pacific Visualization Symposium, 91-100, 2017.
[252]
Wu, Y. C.; Chen, Z. T.; Sun, G. D.; Xie, X.; Cao, N.; Liu, S. X.; Cui, W. StreamExplorer: A multi-stage system for visually exploring events in social streams. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 10, 2758-2772, 2018.
[253]
Wu, Y. C.; Liu, S. X.; Yan, K.; Liu, M. C.; Wu, F. Z. OpinionFlow: Visual analysis of opinion diffusion on social media. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 12, 1763-1772, 2014.
[254]
Wu, Y. H.; Pitipornvivat, N.; Zhao, J.; Yang, S. X.; Huang, G. W.; Qu, H. M. egoSlider: Visual analysis of egocentric network evolution. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 1, 260-269, 2016.
[255]
Xie, C.; Chen, W.; Huang, X. X.; Hu, Y. Q.; Barlowe, S.; Yang, J. VAET: A visual analytics approach for E-transactions time-series. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 12, 1743-1752, 2014.
[256]
Xu, J.; Tao, Y.; Lin, H.; Zhu, R.; Yan, Y. Exploring controversy via sentiment divergences of aspects in reviews. In: Proceedings of the IEEE Pacific Visualization Symposium, 240-249, 2017.
[257]
Xu, J.; Tao, Y. B.; Yan, Y. Y.; Lin, H. Exploring evolution of dynamic networks via diachronic node embeddings. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 7, 2387-2402, 2020.
[258]
Xu, P. P.; Mei, H. H.; Ren, L.; Chen, W. ViDX: Visual diagnostics of assembly line performance in smart factories. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 1, 291-300, 2017.
[259]
Xu, P. P.; Wu, Y. C.; Wei, E. X.; Peng, T. Q.; Liu, S. X.; Zhu, J. J.; Qu. H. Visual analysis of topic competition on social media. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 12, 2012-2021, 2013.
[260]
Yu, L.; Wu, W.; Li, X.; Li, G.; Ng, W. S.; Ng, S.-K.; Huang, Z.; Arunan, A.; Watt, H. M. iVizTRANS: Interactive visual learning for home and work place detection from massive public transportation data. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 49-56, 2015.
[261]
Garcia Zanabria, G.; Alvarenga Silveira, J.; Poco, J.; Paiva, A.; Batista Nery, M.; Silva, C. T.; de Abreu, S. F. A.; Nonato, L. G. CrimAnalyzer: Understanding crime patterns in São Paulo. IEEE Transactions on Visualization and Computer Graphics , 2019.
[262]
Zeng, H. P.; Shu, X. H.; Wang, Y. B.; Wang, Y.; Zhang, L. G.; Pong, T. C.; Qu, H. EmotionCues: Emotion-oriented visual summarization of classroom videos. IEEE Transactions on Visualization and Computer Graphics , 2020.
[263]
Zeng, H. P.; Wang, X. B.; Wu, A. Y.; Wang, Y.; Li, Q.; Endert, A.; Qu, H. EmoCo: Visual analysis of emotion coherence in presentation videos. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 1, 927-937, 2019.
[264]
Zeng, W.; Fu, C. W.; Müller Arisona, S.; Erath, A.; Qu, H. Visualizing waypoints-constrained origin-destination patterns for massive transportation data. Computer Graphics Forum Vol. 35, No. 8, 95-107, 2016.
[265]
Zhang, J. W.; Ahlbrand, B.; Malik, A.; Chae, J.; Min, Z. Y.; Ko, S.; Ebert, D. S. A visual analytics framework for microblog data analysis at multiple scales of aggregation. Computer Graphics Forum Vol. 35, No. 3, 441-450, 2016.
[266]
Zhang, J. W.; E, Y. L.; Ma, J.; Zhao, Y. H.; Xu, B. H.; Sun, L. T.; Chen, J.; Yuan, X. Visual analysis of public utility service problems in a metropolis. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 12, 1843-1852, 2014.
[267]
Zhao, J.; Cao, N.; Wen, Z.; Song, Y. L.; Lin, Y. R.; Collins, C. #FluxFlow: Visual analysis of anomalous information spreading on social media. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 12, 1773-1782, 2014.
[268]
Zhao, Y.; Luo, X. B.; Lin, X. R.; Wang, H. R.; Kui, X. Y.; Zhou, F. F.; Wang, J.; Chen, Y.; Chen, W. Visual analytics for electromagnetic situation awareness in radio monitoring and management. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 1, 590-600, 2020.
[269]
Zhou, Z. G.; Meng, L. H.; Tang, C.; Zhao, Y.; Guo, Z. Y.; Hu, M. X.; Chen, W. Visual abstraction of large scale geospatial origin-destination movement data. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 43-53, 2019.
[270]
Zhou, Z. G.; Ye, Z. F.; Liu, Y. N.; Liu, F.; Tao, Y. B.; Su, W. H. Visual analytics for spatial clusters of air-quality data. IEEE Computer Graphics and Applications Vol. 37, No. 5, 98-105, 2017.
[271]
Tian, T.; Zhu, J. Max-margin majority voting for learning from crowds. In: Proceedings of the Advances in Neural Information Processing Systems, 1621-1629, 2015.
[272]
Ng, A. Machine learning and AI via brainsimulations. 2013. Available at https://ai.stanford.edu/∼ang/slides/DeepLearning-Mar2013.pptx.
[273]
Nilsson, N. J. Introduction to Machine Learning: An Early Draft of a Proposed Textbook. 2005. Available at https://ai.stanford.edu/∼nilsson/MLBOOK.pdf.
[274]
Lakshminarayanan, B.; Pritzel, A.; Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. In: Proceedings of the Advances in Neural Information Processing Systems, 6402-6413, 2017.
[275]
Lee, K.; Lee, H.; Lee, K.; Shin, J. Training confidence-calibrated classifiers for detecting ut-of-distribution samples. arXiv preprint arXiv:1711.09325, 2018.
[276]
Liu, M. C.; Jiang, L.; Liu, J. L.; Wang, X. T.; Zhu, J.; Liu, S. X. Improving learning-from-crowds through expert validation. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2329-2336, 2017.
[277]
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A. C.; Fei-Fei, L. ImageNet large scale visual recognition challenge. International Journal of Computer Vision Vol. 115, No. 3, 211-252, 2015.
[278]
Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Computers & Electrical Engineering Vol. 40, No. 1, 16-28, 2014.
[279]
Brooks, M.; Amershi, S.; Lee, B.; Drucker, S. M.; Kapoor, A.; Simard, P. FeatureInsight: Visual support for error-driven feature ideation in text classification. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 105-112, 2015.
[280]
Tzeng, F.-Y.; Ma, K.-L. Opening the black box—Data driven visualization of neural networks. In: Proceedings of the IEEE Conference on Visualization, 383-390, 2005.
[281]
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M. et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems, arXiv preprint arXiv:1603.04467, 2015.
[282]
Ming, Y.; Xu, P. P.; Qu, H. M.; Ren, L. Interpretable and steerable sequence learning via prototypes. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 903-913, 2019.
[283]
Liu, S. X.; Cui, W. W.; Wu, Y. C.; Liu, M. C. A survey on information visualization: Recent advances and challenges. The Visual Computer Vol. 30, No. 12, 1373-1393, 2014.
[284]
Ma, Z.; Dou, W.; Wang, X.; Akella, S. Tag-latent Dirichlet allocation: Understanding hashtags and their relationships. In: Proceedings of the IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, 260-267, 2013.
[285]
Kosara, R.; Bendix, F.; Hauser, H. Parallel sets: Interactive exploration and visual analysis of categorical data. IEEE Transactions on Visualization and Computer Graphics Vol. 12, No. 4, 558-568, 2006.
[286]
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; Dean, J. Distributed representations of words and phrases and their compositionality. In: Proceedings of the Advances in Neural Information Processing Systems, 3111-3119, 2013.
[287]
Blei, D. M.; Ng, A. Y.; Jordan, M. I. Latent Dirichlet allocation. Journal of Machine Learning Research Vol. 3, 993-1022, 2003.
[288]
Teh, Y. W.; Jordan, M. I.; Beal, M. J.; Blei, D. M. Hierarchical dirichlet processes. Journal of the American Statistical Association Vol. 101, No. 476, 1566-1581, 2006.
[289]
Wang, X. T.; Liu, S. X.; Song, Y. Q.; Guo, B. N. Mining evolutionary multi-branch trees from text streams. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 722-730, 2013.
[290]
Li, Y. F.; Guo, L. Z.; Zhou, Z. H. Towards safe weakly supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2019.
[291]
Li, Y. F.; Wang, S. B.; Zhou, Z. H. Graph quality judgement: A large margin expedition. In: Proceedings of the International Joint Conference on Artificial Intelligence, 1725-1731, 2016.
[292]
Zhou, Z. H. A brief introduction to weakly supervised learning. National Science Review Vol. 5, No. 1, 44-53, 2018.
[293]
Foulds, J.; Frank, E. A review of multi-instance learning assumptions. The Knowledge Engineering Review Vol. 25, No. 1, 1-25, 2010.
[294]
Zhou, Z. H. Multi-instance learning from supervised view. Journal of Computer Science and Technology Vol. 21, No. 5, 800-809, 2006.
[295]
Donahue, J.; Jia, Y.; Vinyals, O.; Hofiman, J.; Zhang, N.; Tzeng, E.; Darrell, T. DeCAF: A deep convolutional activation feature for generic visual recognition. In: Proceedings of the International Conference on Machine Learning, 647-655, 2014.
[296]
Wang, Q. W.; Yuan, J.; Chen, S. X.; Su, H.; Qu, H. M.; Liu, S. X. Visual genealogy of deep neural networks. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 11, 3340-3352,2020.
[297]
Ayinde, B. O.; Zurada, J. M. Building eficient ConvNets using redundant feature pruning. arXiv preprint arXiv:1802.07653, 2018.
[298]
Baltrusaitis, T.; Ahuja, C.; Morency, L. P. Multimodal machine learning: A survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 41, No. 2, 423-443, 2019.
[299]
Lu, J.; Batra, D.; Parikh, D.; Lee, S. ViLBERT: Pretraining task-agnostic visiolinguistic represen-tations for vision-and-language tasks. In: Proceedings of the Advances in Neural Information Processing Systems, 13-23, 2019.
[300]
Lu, J.; Liu, A. J.; Dong, F.; Gu, F.; Gama, J.; Zhang, G. Q. Learning under concept drift: A review. IEEE Transactions on Knowledge and Data Engineering Vol. 31, No. 12, 2346-2363, 2018.
[301]
Yang, W.; Li, Z.; Liu, M.; Lu, Y.; Cao, K.; Maciejewski, R.; Liu, S. Diagnosing concept drift with visual analytics. arXiv preprint arXiv:2007.14372, 2020.
[302]
Wang, X.; Chen, W.; Xia, J.; Chen, Z.; Xu, D.; Wu, X.; Xu, M.; Schreck, T. Conceptexplorer: Visual analysis of concept drifts in multi-source time-series data. arXiv preprint arXiv:2007.15272, 2020.
[303]
Liu, S.; Andrienko, G.; Wu, Y.; Cao, N.; Jiang, L.; Shi, C.; Wang, Y.-S.; Hong, S. Steering data quality with visual analytics: The complexity challenge. Visual Informatics Vol. 2, No. 4, 191-197, 2018.
Computational Visual Media
Pages 3-36
Cite this article:
Yuan J, Chen C, Yang W, et al. A survey of visual analytics techniques for machine learning. Computational Visual Media, 2021, 7(1): 3-36. https://doi.org/10.1007/s41095-020-0191-7

2211

Views

169

Downloads

161

Crossref

N/A

Web of Science

167

Scopus

10

CSCD

Altmetrics

Received: 12 July 2020
Accepted: 04 August 2020
Published: 25 November 2020
© The Author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www. editorialmanager.com/cvmj.

Return