AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

ClusterSLAM: A SLAM backend for simultaneous rigid body clustering and motion estimation

BNRist, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
Alibaba A.I. Labs, Hangzhou 311121, China
School of Computer Science and Informatics, Cardiff University, Cardiff, CF24 3AA, UK
Show Author Information

Abstract

We present a practical backend for stereovisual SLAM which can simultaneously discoverindividual rigid bodies and compute their motions in dynamic environments. While recent factor graph based state optimization algorithms have shown their ability to robustly solve SLAM problems by treating dynamic objects as outliers, their dynamic motions are rarely considered. In this paper, we exploit the consensus of 3D motions for landmarks extracted from the same rigid body for clustering, and to identify static and dynamic objects in a unified manner. Specifically, our algorithm builds a noise-aware motion affinity matrix from landmarks, and uses agglomerative clustering to distinguish rigid bodies. Using decoupled factor graph optimization to revise their shapes and trajectories, we obtain an iterative scheme to update both cluster assignments and motion estimation reciprocally. Evaluations on both synthetic scenes and KITTI demonstrate the capability of our approach, and further experiments considering online efficiency also show the effectiveness of our method for simultaneously tracking ego-motion and multiple objects.

References

[1]
Agarwal, P.; Tipaldi, G. D.; Spinello, L.; Stachniss, C.; Burgard, W. Robust map optimization using dynamic covariance scaling. In: Proceedings of the IEEE International Conference on Robotics and Automation, 62-69, 2013.
[2]
Carlone, L.; Censi, A.; Dellaert, F. Selecting good measurements via 1 relaxation: A convex approach for robust estimation over graphs. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2667-2674, 2014.
[3]
Kim, D. H.; Kim, J. H. Effective background model-based RGB-D dense visual odometry in a dynamic environment. IEEE Transactions on Robotics Vol. 32, No. 6, 1565-1573, 2016.
[4]
Bescos, B.; Facil, J. M.; Civera, J.; Neira, J. DynaSLAM: Tracking, mapping, and inpainting in dynamic scenes. IEEE Robotics and Automation Letters Vol. 3, No. 4, 4076-4083, 2018.
[5]
Rünz, M.; Agapito, L. Co-fusion: Real-time segmentation, tracking and fusion of multiple objects. In: Proceedings of the IEEE International Conference on Robotics and Automation, 4471-4478, 2017.
[6]
Runz, M.; Buffier, M.; Agapito, L. MaskFusion: Real-time recognition, tracking and reconstruction of multiple moving objects. In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality, 10-20, 2018.
[7]
Barsan, I. A.; Liu, P.; Pollefeys, M.; Geiger, A. Robust dense mapping for large-scale dynamic environments. In: Proceedings of the IEEE International Conference on Robotics and Automation, 7510-7517, 2018.
[8]
Xu, B.; Li, W.; Tzoumanikas, D.; Bloesch, M.; Davison, A.; Leutenegger, S.; MID-fusion: Octree-based object-level multi-instance dynamic SLAM. In: Proceedings of the IEEE International Conference on Robotics and Automation, 5231-5237, 2019.
[9]
Paull, L.; Huang, G.; Seto, M.; Leonard, J. J. Communication-constrained multi-AUV cooperative SLAM. In: Proceedings of the IEEE InternationalConference on Robotics and Automation, 509-516, 2015.
[10]
Li, P. L.; Qin, T.; Shen, S. J. Stereo vision-based semantic 3D object and ego-motion tracking for autonomous driving. In: Computer Vision - ECCV 2018. Lecture Notes in Computer Science, Vol. 11206. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 664-679, 2018.
[11]
Jaimez, M.; Kerl, C.; Gonzalez-Jimenez, J.; Cremers, D. Fast odometry and scene flow from RGB-D cameras based on geometric clustering. In: Proceedings of the IEEE International Conference on Robotics and Automation, 3992-3999, 2017.
[12]
He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, 2961-2969, 2017.
[13]
Chen, L. C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. L. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 40, No. 4, 834-848, 2018.
[14]
Lenz, P.; Ziegler, J.; Geiger, A.; Roser, M. Sparse scene flow segmentation for moving object detection in urban environments. In: Proceedings of the IEEE Intelligent Vehicles Symposium, 926-932, 2011.
[15]
Huang, J.; Yang, S.; Zhao, Z.; Lai, Y.-K.; Hu, S.-M. Clusterslam: A slam backend for simultaneous rigid body clustering and motion estimation. In: Proceedings of the IEEE International Conference on Computer Vision, 5875-5884, 2019.
[16]
Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. The International Journal of Robotics Research Vol. 32, No. 11, 1231-1237, 2013.
[17]
Alcantarilla, P. F.; Yebes, J. J.; Almazán, J.; Bergasa, L. M. On combining visual SLAM and dense scene flow to increase the robustness of localization and mapping in dynamic environments. In: Proceedings of the IEEE International Conference on Robotics and Automation, 1290-1297, 2012.
[18]
Mur-Artal, R.; Tardos, J. D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics Vol. 33, No. 5, 1255-1262, 2017.
[19]
Kundu, A.; Krishna, K. M.; Jawahar, C. Realtime multibody visual SLAM with a smoothly moving monocular camera. In: Proceedings of the IEEE International Conference on Computer Vision, 2080-2087, 2011.
[20]
Judd, K. M.; Gammell, J. D.; Newman, P. Multimotion visual odometry (MVO): Simultaneous estimation of camera and third-party motions. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 3949-3956, 2018.
[21]
Dinesh Reddy, N.; Vo, M.; Narasimhan, S. G. CarFusion: Combining point tracking and part detection for dynamic 3D reconstruction of vehicles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1906-1915, 2018.
[22]
Strecke, M.; Stuckler, J. Em-fusion: Dynamic object-level slam with probabilistic data association. In: Proceedings of the IEEE International Conference on Computer Vision, 5865-5874, 2019.
[23]
Saputra, M. R. U.; Markham, A.; Trigoni, N. Visual SLAM and structure from motion in dynamic environments. ACM Computing Surveys Vol. 51, No. 2, 1-36, 2018.
[24]
Costeira, J. P.; Kanade, T. A multibody factorizationmethod for independently moving objects. International Journal of Computer Vision Vol. 29, No. 3, 159-179, 1998.
[25]
Li, T.; Kallem, V.; Singaraju, D.; Vidal, R. Projective factorization of multiple rigid-body motions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-6, 2007.
[26]
Fischler, M. A.; Bolles, R. C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM Vol. 24, No. 6, 381-395, 1981.
[27]
Azartash, H.; Lee, K.; Nguyen, T. Q. Visual odometry for RGB-D cameras for dynamic scenes. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1280-1284, 2014.
[28]
Xu, X.; Cheong, L.F.; Li, Z. Motion segmentation by exploiting complementary geometric models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2859-2867, 2018.
[29]
Vidal, R.; Ma, Y.; Soatto, S.; Sastry, S. Two-viewmultibody structure from motion. International Journal of Computer Vision Vol. 68, No. 1, 7-25, 2006.
[30]
Vidal, R.; Hartley, R. Three-view multibody structure from motion. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 30, No. 2, 214-227, 2008.
[31]
Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.; Brox, T. FlowNet 2.0: Evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE International Conference on Computer Vision, 2462-2470, 2017.
[32]
Xie, Z.-F.; Guo, Y.-C.; Zhang, S.-H.; Zhang, W.-J.; Ma, L.-Z. Multi-exposure motion estimation based on deep convolutional networks. Journal of Computer Science and Technology Vol. 33, No. 3, 487-501, 2018.
[33]
Zhang, C. C.; Liu, Z. L. Prior-free dependent motion segmentation using Helmholtz-Hodge decompositionbased object-motion oriented map. Journal of Computer Science and Technology Vol. 32, No. 3, 520-535, 2017.
[34]
Isack, H.; Boykov, Y. Energy-based geometric multi-model fitting. International Journal of Computer Vision Vol. 97, No. 2, 123-147, 2012.
[35]
Fan, R. C.; Zhang, F. L., Zhang, M.; Martin, R. R. Robust tracking-by-detection using a selection and completion mechanism. Computational Visual Media Vol. 3, No. 3, 285-294, 2017.
[36]
Yuan, G.; Sun, P. H.; Zhao, J.; Li, D. X.; Wang, C. W. A review of moving object trajectory clustering algorithms. Artificial Intelligence Review Vol. 47, No. 1, 123-144, 2017.
[37]
Guha, S.; Rastogi, R.; Shim, K. CURE: An efficient clustering algorithm for large databases. ACM SIGMOD Record Vol. 27, No. 2, 73-84, 1998.
[38]
Sokal, R. R. A statistical method for evaluating systematic relationship. University of Kansas Science Bulletin Vol. 28, 1409-1438, 1958.
[39]
DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperPoint: Self-supervised interest point detection and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 337, 2018.
[40]
Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision. Cambridge University Press, 2003.
[41]
Defays, D. An efficient algorithm for a complete link method. The Computer Journal Vol. 20, No. 4, 364-366, 1977.
[42]
Nguyen, N.; Caruana, R. Consensus clusterings. In: Proceedings of the IEEE International Conference on Data Mining, 607-612, 2007.
[43]
Newcombe, R. A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A. J.; Kohi, P.; Shotton, J.; Hodges, S.; Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and tracking. In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality, 127-136, 2011.
[44]
Cao, Y. P.; Kobbelt, L., Hu, S. M. Real-time high-accuracy three-dimensional reconstruction with consumer RGB-D cameras. ACM Transactions on Graphics Vol. 37, No. 5, Article No. 171, 2018.
[45]
Song, S.; Yu, F.; Zeng, A.; Chang, A. X.; Savva, M.; Funkhouser, T. Semantic scene completion from a single depth image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1746-1754, 2017.
[46]
Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, 1-16, 2017.
[47]
Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2o: A general framework for graph optimization. In: Proceedings of the IEEE International Conference on Robotics and Automation, 3607-3613, 2011.
[48]
Meilǎ M. Comparing clusterings by the variation of information. In: Learning Theory and Kernel Machines. Lecture Notes in Computer Science, Vol. 2777. Schölkopf, B.; Warmuth, M.K. Eds. Springer Berlin Heidelberg, 173-187, 2003.
[49]
Ravankar, A.; Ravankar, A.; Kobayashi, Y.; Hoshino, Y.; Peng, C. C. Path smoothing techniques in robot navigation: State-of-the-art, current and future challenges. Sensors Vol. 18, No. 9, 3170, 2018.
[50]
Murali, V.; Chiu, H.-P.; Samarasekera, S.; Kumar, R. T. Utilizing semantic visual landmarks for precise vehicle navigation. In: Proceedings of the IEEE International Conference on Intelligent Transportation Systems, 1-8, 2017.
Computational Visual Media
Pages 87-101
Cite this article:
Huang J, Yang S, Zhao Z, et al. ClusterSLAM: A SLAM backend for simultaneous rigid body clustering and motion estimation. Computational Visual Media, 2021, 7(1): 87-101. https://doi.org/10.1007/s41095-020-0195-3

883

Views

43

Downloads

10

Crossref

10

Web of Science

12

Scopus

4

CSCD

Altmetrics

Received: 09 April 2020
Accepted: 04 September 2020
Published: 07 January 2021
© The Author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www. editorialmanager.com/cvmj.

Return