AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (902.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Temporal scatterplots

Tel-Aviv University, Tel-Aviv, Israel
Shenzhen University, Shenzhen, China
Show Author Information

Abstract

Visualizing high-dimensional data on a 2Dcanvas is generally challenging. It becomes significantlymore difficult when multiple time-steps are to be presented, as the visual clutter quickly increases. Moreover, the challenge to perceive the significant temporal evolution is even greater. In this paper, we present a method to plot temporal high-dimensional data in a static scatterplot; it uses the established PCA technique to project data from multiple time-steps. The key idea is to extend each individual displacement prior to applying PCA, so as to skew the projection process, and to set a projection plane that balances the directions of temporal change and spatial variance. We present numerous examples and various visual cues to highlight the data trajectories, and demonstrate the effectiveness of the method for visualizing temporal data.

References

[1]
D. Archambault,; H. Purchase,; B. Pinaud, Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE Transactions on Visualization and Computer Graphics Vol. 17, No. 4, 539-552, 2011.
[2]
P. E. Rauber,; A. X. Falcão,; A. C. Telea, Visualizing time-dependent data using dynamic t-SNE. In: Proceedings of the Eurographics Conference on Visualization (Short Papers), 73-77, 2016.
[3]
E. Tufte, Envisioning Information. Graphics Press Cheshire, 1990.
[4]
D. A. Keim, Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics Vol. 8, No. 1, 1-8, 2002.
[5]
S. S. Liu,; D. Maljovec,; B. Wang,; P. T. Bremer,; V. Pascucci, Visualizing high-dimensional data: Advances in the past decade. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 3, 1249-1268, 2017.
[6]
A. Inselberg, The plane with parallel coordinates. The Visual Computer Vol. 1, No. 2, 69-91, 1985.
[7]
E. Kandogan, Star coordinates: A multi-dimensional visualization technique with uniform treatment of dimensions. In: Proceedings of the IEEE Information Visualization Symposium, Vol. 650, 22, 2000.
[8]
D. A. Keim,; H. P. Kriegel, VisDB: Database exploration using multidimensional visualization. IEEE Computer Graphics and Applications Vol. 14, No. 5, 40-49, 1994.
[9]
H. Chernoff, The use of faces to represent points in k-dimensional space graphically. Journal of the American Statistical Association Vol. 68, No. 342, 361-368, 1973.
[10]
Y. H. Wang,; X. Chen,; T. Ge,; C. Bao,; M. Sedlmair,; C. W. Fu,; O. Deussen,; B. Chen, Optimizing color assignment for perception of class separability in multiclass scatterplots. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 820-829, 2019.
[11]
A. Mayorga,; M. Gleicher, Splatterplots: Overcoming overdraw in scatter plots. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 9, 1526-1538, 2013.
[12]
M. Lu,; S. Q. Wang,; J. Lanir,; N. Fish,; Y. Yue,; D. Cohen-Or,; H. Huang, Winglets: Visualizing association with uncertainty in multi-class scatterplots. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 1, 770-779, 2020.
[13]
Y. H. Chan,; C. D. Correa,; K. L. Ma, The generalized sensitivity scatterplot. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 10, 1768-1781, 2013.
[14]
L. Wilkinson,; A. Anand,; R. Grossman, High-dimensional visual analytics: Interactive exploration guided by pairwise views of point distributions. IEEE Transactions on Visualization and Computer Graphics Vol. 12, No. 6, 1363-1372, 2006.
[15]
N. Elmqvist,; P. Dragicevic,; J. D. Fekete, Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation. IEEE Transactions on Visualization and Computer Graphics Vol. 14, No. 6, 1539-1148, 2008.
[16]
J. F. Im,; M. J. McGuffin,; R. Leung, GPLOM: The generalized plot matrix for visualizing multidimensional multivariate data. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 12, 2606-2614, 2013.
[17]
T. N. Dang,; L. Wilkinson, ScagExplorer: Exploring scatterplots by their scagnostics. In: Proceedings of the IEEE Pacific Visualization Symposium, 73-80, 2014.
[18]
I. Jolliffe, Principal Component Analysis. Springer Berlin Heidelberg, 1094-1096, 2011.
[19]
L. Van der Maaten,; G. Hinton, Visualizing data using t-SNE. Journal of Machine Learning Research Vol. 9, No. 86, 2579-2605, 2008.
[20]
J. De Leeuw, Multidimensional scaling. 2000.
[21]
L. McInnes,; J. Healy,; J. Melville, UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.
[22]
L. G. Nonato,; M. Aupetit, Multidimensional projection for visual analytics: Linking techniques with distortions, tasks, and layout enrichment. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 8, 2650-2673, 2019.
[23]
F. Beck,; M. Burch,; S. Diehl,; D. Weiskopf, A taxonomy and survey of dynamic graph visualization. Computer Graphics Forum Vol. 36, No. 1, 133-159, 2017.
[24]
M. Krstajić,; D. A. Keim, Visualization of streaming data: Observing change and context in information visualization techniques. In: Proceedings of the IEEE International Conference on Big Data, 41-47, 2013.
[25]
B. Bach,; E. Pietriga,; J. D. Fekete, GraphDiaries: Animated transitions and temporal navigation for dynamic networks. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 5, 740-754, 2014.
[26]
S. X. Liu,; J. L. Yin,; X. T. Wang,; W. W. Cui,; K. L. Cao,; J. Pei, Online visual analytics of text streams. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 11, 2451-2466, 2016.
[27]
D. Fisher, Animation for visualization: Opportunities and drawbacks. In: Beautiful Visualization. O’Reilly Media, 329-352, 2010.
[28]
Y. Wang,; D. Archambault,; C. E. Scheidegger,; H. M. Qu, A vector field design approach to animated transitions. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 9, 2487-2500, 2018.
[29]
T. Fujiwara,; J. K. Chou,; S. Shilpika,; P. P. Xu,; L. Ren,; K. L. Ma, An incremental dimensionality reduction method for visualizing streaming multidimensional data. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 1, 418-428, 2020.
[30]
G. A. Alvarez,; S. L. Franconeri, How many objects can you track: Evidence for a resource-limited attentive tracking mechanism. Journal of Vision Vol. 7, No. 13, 14, 2007.
[31]
T. Crnovrsanin,; C. Muelder,; C. Correa,; K. Ma, Proximity-based visualization of movement trace data. In: Proceedings of the IEEE Symposium on Visual Analytics Science and Technology, 11-18, 2009.
[32]
D. Jackle,; F. Fischer,; T. Schreck,; D. A. Keim, Temporal MDS plots for analysis of multivariate data. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 1, 141-150, 2016.
[33]
J. Wulms,; J. Buchmüller,; W. Meulemans,; K. Verbeek,; B. Speckmann, Spatially and temporally coherent visual summaries. arXiv preprint arXiv:1912.00719, 2019.
[34]
D. Hong,; J. A. Fessler,; L. Balzano, Optimally weighted PCA for high-dimensional heteroscedastic data. arXiv preprint arXiv:1810.12862, 2018.
[35]
G. Robertson,; R. Fernandez,; D. Fisher,; B. Lee,; J. Stasko, Effectiveness of animation in trend visualization. IEEE Transactions on Visualization and Computer Graphics Vol. 14, No. 6, 1325-1332, 2008.
Computational Visual Media
Pages 385-400
Cite this article:
Patashnik O, Lu M, Bermano AH, et al. Temporal scatterplots. Computational Visual Media, 2020, 6(4): 385-400. https://doi.org/10.1007/s41095-020-0197-1

782

Views

21

Downloads

2

Crossref

N/A

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 22 July 2020
Accepted: 12 September 2020
Published: 07 November 2020
© The Author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.

Return