AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Erroneous pixel prediction for semantic image segmentation

State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058, China
School of Computing Clemson University, South Carolina, 29634, USA
Show Author Information

Graphical Abstract

Abstract

We consider semantic image segmentation. Our method is inspired by Bayesian deep learning which improves image segmentation accuracy by modeling the uncertainty of the network output. In contrast to uncertainty, our method directly learns to predict the erroneous pixels of a segmentation network, which is modeled as a binary classification problem. It can speed up training comparing to the Monte Carlo integration often used in Bayesian deep learning. It also allows us to train a branch to correct the labels of erroneous pixels. Our method consists of three stages: (i) predict pixel-wise error probability of the initial result, (ii) redetermine new labels for pixels with high error probability, and (iii) fuse the initial result and the redetermined result with respect to the error probability. We formulate the error-pixel prediction problem as a classification task and employ an error-prediction branch in the network to predict pixel-wise error probabilities. We also introduce a detail branch to focus the training process on the erroneous pixels. We have experimentally validated our method on the Cityscapes and ADE20K datasets. Our model can be easily added to various advanced segmentation networks to improve their performance. Taking DeepLabv3+ as an example, our network can achieve 82.88% of mIoU on Cityscapes testing dataset and 45.73% on ADE20K validation dataset, improving corresponding DeepLabv3+ results by 0.74% and 0.13% respectively.

Electronic Supplementary Material

Download File(s)
101320TP-2022-1-165_ESM.pdf (2.4 MB)

References

[1]
Everingham, M.; Eslami, S. M. A.; van Gool, L.; Williams, C. K. I.; Winn, J.; Zisserman, A. The pascal visual object classes challenge: A retrospective. International Journal of Computer Vision Vol. 111, No. 1, 98136, 2015.
[2]
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 32133223, 2016.
[3]
Zhou, B. L.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Scene parsing through ADE20K dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 633641, 2017.
[4]
Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 34313440, 2015.
[5]
Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention. Lecture Notes in Computer Science, Vol. 9351. Navab, N.; Hornegger, J.; Wells, W.; Frangi, A. Eds. Springer Cham, 234241, 2015.
[6]
Chen, L.-C.; Papandreou, G.; Schrofi, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.
[7]
Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 62306239, 2017.
[8]
Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid attention network for semantic segmentation. arXiv preprint arXiv:1805.10180, 2018.
[9]
Lin, G. S.; Milan, A.; Shen, C. H.; Reid, I. RefineNet: Multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 51685177, 2017.
[10]
Li, X.; Liu, Z.; Luo, P.; Loy, C. C.; Tang, X. Not all pixels are equal: Dificulty-aware semantic segmentation via deep layer cascade. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 64596468, 2017.
[11]
Kendall, A.; Gal, Y. What uncertainties do we need in Bayesian deep learning for computer vision? In: Proceedings of the 31st Conference on Neural Information Processing Systems, 2017.
[12]
Chen, L. C.; Zhu, Y. K.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Computer Vision–ECCV 2018. Lecture Notes in Computer Science, Vol. 11211. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 833851, 2018.
[13]
Guo, Y. M.; Liu, Y.; Georgiou, T.; Lew, M. S. A review of semantic segmentation using deep neural networks. International Journal of Multimedia Information Retrieval Vol. 7, No. 2, 8793, 2018.
[14]
Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 39, No. 12, 24812495, 2017.
[15]
Ghiasi, G.; Fowlkes, C. C. Laplacian pyramid reconstruction and refinement for semantic segmentation. In: Computer Vision–ECCV 2016. Lecture Notes in Computer Science, Vol. 9907. Leibe, B.; Matas, J.; Sebe, N.; Welling, M. Eds. Springer Cham, 519534, 2016.
[16]
Peng, C.; Zhang, X. Y.; Yu, G.; Luo, G. M.; Sun, J. Large kernel matters—improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 17431751, 2017.
[17]
Ding, H. H.; Jiang, X. D.; Shuai, B.; Liu, A. Q.; Wang, G. Context contrasted feature and gated multi-scale aggregation for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 23932402, 2018.
[18]
Liu, W.; Rabinovich, A.; Berg, A. C. ParseNet: Looking wider to see better. arXiv preprint arXiv:1506.04579, 2015.
[19]
Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 71327141, 2018.
[20]
Chen, L. C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. L. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 40, No. 4, 834848, 2018.
[21]
Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. L. Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062, 2014.
[22]
Zhang, H.; Dana, K., Shi, J. P.; Zhang, Z. Y.; Wang, X. G.; Tyagi, A.; Agrawal, A. Context encoding for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 71517160, 2018.
[23]
Sun, K.; Xiao, B.; Liu, D.; Wang, J. D. Deephigh-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition, 56865696, 2019.
[24]
Chen, L.-C.; Collins, M.; Zhu, Y.; Papandreou, G.; Zoph, B.; Schrofi, F.; Adam, H.; Shlens, J. Searching for efficient multi-scale architectures for dense image prediction. In: Proceedings of the 32nd Conference on Neural Information Processing Systems, 87138724, 2018.
[25]
Nekrasov, V.; Chen, H.; Shen, C. H.; Reid, I. Fast neural architecture search of compact semantic segmentation models via auxiliary cells. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 91189127, 2019.
[26]
Liu, C. X.; Chen, L. C.; Schroff, F.; Adam, H.; Hua, W.; Yuille, A. L.; Fei-Fei, L. Auto-DeepLab: Hierarchical neural architecture search for semantic image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8292, 2019.
[27]
Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 511518, 2001.
[28]
Lienhart, R.; Maydt, J. An extended set of Haar-like features for rapid object detection. In: Proceedings of the International Conference on Image Processing, 2002.
[29]
Pang, J. H.; Sun, W. X.; Ren, J. S.; Yang, C. X.; Yan, Q. Cascade residual learning: A two-stage convolutional neural network for stereo matching. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, 878886, 2017.
[30]
Li, H. X.; Lin, Z.; Shen, X. H.; Brandt, J.; Hua, G. A convolutional neural network cascade for face detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 53255334, 2015.
[31]
Iofie, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.
[32]
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research Vol. 15, 19291958, 2014.
[33]
Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[34]
Wu, Y.; He, K. Group normalization. In: Computer Vision–ECCV 2018. Lecture Notes in Computer Science, Vol. 11217. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 319, 2018.
[35]
Tian, Z.; He, T.; Shen, C. H.; Yan, Y. L. Decoders matter for semantic segmentation: Data-dependent decoding enables flexible feature aggregation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 31213130, 2019.
[36]
Yu, H.; Zhang, Z. N.; Qin, Z.; Wu, H.; Li, D. S.; Zhao, J.; Lu, X. Loss rank mining: A general hard example mining method for real-time detectors. In: Proceedings of the International Joint Conference on Neural Networks, 2018.
[37]
Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122, 2015.
[38]
Zhou, B.; Zhao, H.; Puig, X.; Xiao, T.; Fidler, S.; Barriuso, A.; Torralba, A. Semantic understanding of scenes through the ade20k dataset. International Journal of Computer Vision Vol. 127, No. 3, 302321, 2019.
Computational Visual Media
Pages 165-175
Cite this article:
Gong L, Zhang Y, Zhang Y, et al. Erroneous pixel prediction for semantic image segmentation. Computational Visual Media, 2022, 8(1): 165-175. https://doi.org/10.1007/s41095-021-0235-7

720

Views

27

Downloads

11

Crossref

9

Web of Science

9

Scopus

1

CSCD

Altmetrics

Received: 13 January 2021
Accepted: 30 March 2021
Published: 27 October 2021
© The Author(s) 2021.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www. editorialmanager.com/cvmj.

Return