Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A significant performance boost has been achieved in point cloud semantic segmentation by utilization of the encoder-decoder architecture and novel convolution operations for point clouds. However, co-occurrence relationships within a local region which can directly influence segmentation results are usually ignored by current works. In this paper, we propose a neighborhood co-occurrence matrix (NCM) to model local co-occurrence relationships in a point cloud. Wegenerate target NCM and prediction NCM fromsemantic labels and a prediction map respectively. Then,Kullback-Leibler (KL) divergence is used to maximize the similarity between the target and prediction NCMs to learn the co-occurrence relationship. Moreover, for large scenes where the NCMs for a sampled point cloud and the whole scene differ greatly, we introduce a reverse form of KL divergence which can better handle the difference to supervise the prediction NCMs. We integrate our method into an existing backbone and conduct comprehensive experiments on three datasets: Semantic3D for outdoor space segmentation, and S3DIS and ScanNet v2 for indoor scene segmentation. Results indicate that our method can significantly improve upon the backbone and outperform many leading competitors.
681
Views
33
Downloads
8
Crossref
9
Web of Science
7
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www. editorialmanager.com/cvmj.