AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Image-guided color mapping for categorical data visualization

Suzhou University of Science and Technology, Suzhou 215009, China
Shenzhen University, Shenzhen 518052, China
The University of Haifa, Haifa 3498838, Israel
Show Author Information

Graphical Abstract

Abstract

Appropriate color mapping for categorical data visualization can significantly facilitate the discovery of underlying data patterns and effectively bring out visual aesthetics. Some systems suggest pre-defined palettes for this task. However, a predefined color mapping is not always optimal, failing to consider users’ needs for customization. Given an input cate-gorical data visualization and a reference image, we present an effective method to automatically generate a coloring that resembles the reference while allowing classes to be easily distinguished. We extract a color palette with high perceptual distance between the colors by sampling dominant and discriminable colors from the image’s color space. These colors are assigned to given classes by solving an integer quadratic program to optimize point distinctness of the given chart while preserving the color spatial relations in the source image. We show results on various coloring tasks, with a diverse set of new coloring appearances for the input data. We also compare our approach to state-of-the-art palettes in a controlled user study, which shows that our method achieves comparable performance in class discrimination, while being more similar to the source image. User feedback after using our system verifies its efficiency in automatically generating desirable colorings that meet the user’s expectations when choosing a reference.

Electronic Supplementary Material

Video
41095_0258_ESM.mp4

References

[1]
Behrisch, M.; Blumenschein, M.; Kim, N. W.; Shao, L.; El-Assady, M.; Fuchs, J.; Seebacher, D.; Diehl, A.; Brandes, U.; Pfister, H.; Schreck, T.; Weiskopf, D.; Keim, D. A. Quality metrics for information visualization. Computer Graphics Forum Vol. 37, No. 3, 625-662, 2018.
[2]
Silva, S.; Sousa Santos, B.; Madeira, J. Using color in visualization: A survey. Computers & Graphics Vol. 35, No. 2, 320-333, 2011.
[3]
Harrower, M.; Brewer, C. A. ColorBrewer.org: An online tool for selecting colour schemes for maps. The Cartographic Journal Vol. 40, No. 1, 27-37, 2003.
[4]
Gramazio, C. C.; Laidlaw, D. H.; Schloss, K. B. Colorgorical: Creating discriminable and preferable color palettes for information visualization. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 1, 521-530, 2017.
[5]
Lin, S.; Fortuna, J.; Kulkarni, C.; Stone, M.; Heer, J. Selecting semantically-resonant colors for data visualization. Computer Graphics Forum Vol. 32, No. 3pt4, 401-410, 2013.
[6]
Kim, H. R.; Yoo, M. J.; Kang, H.; Lee, I. K.Perceptually-based color assignment. Computer Graphics Forum Vol. 33, No. 7, 309-318, 2014.
[7]
Wang, Y.; Chen, X.; Ge, T.; Bao, C.; Sedlmair, M.; Fu, C. W.; Deussen, O.; Chen, B. Optimizing color assignment for perception of class separability in multiclass scatterplots. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 1, 820-829, 2019.
[8]
Lin, S.; Ritchie, D.; Fisher, M.; Hanrahan, P. Probabilistic color-by-numbers. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 37, 2013.
[9]
Lu, K. C.; Feng, M.; Chen, X.; Sedlmair, M.; Deussen, O.; Lischinski, D.; Cheng, Z.; Wang, Y. Palettailor: Discriminable colorization for categorical data. IEEE Transactions on Visualization and Computer Graphics Vol. 27, No. 2, 475-484, 2021.
[10]
Schlömer, T.; Heck, D.; Deussen, O. Farthest-point optimized point sets with maximized minimum distance. In: Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, 135-142, 2011.
[11]
Healey, C. G. Choosing effective colours for data visualization. In: Proceedings of the 7th Annual IEEE Visualization, 263-270, 1996.
[12]
Trumbo, B. E. A theory for coloring bivariate statistical maps. The American Statistician Vol. 35, No. 4, 220-226, 1981.
[13]
Zeileis, A.; Hornik, K.; Murrell, P. Escaping RGBland: Selecting colors for statistical graphics. Computational Statistics & Data Analysis Vol. 53, No. 9, 3259-3270, 2009.
[14]
Bartram, L.; Patra, A.; Stone, M. Affective color in visualization. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, 1364-1374, 2017.
[15]
O’Donovan, P.; Agarwala, A.; Hertzmann, A. Color compatibility from large datasets. ACM Transactions on Graphics Vol. 30, No. 4, Article No. 63, 2011.
[16]
Kita, N.; Miyata, K. Aesthetic rating and color suggestion for color palettes. Computer Graphics Forum Vol. 35, No. 7, 127-136, 2016.
[17]
Fang, H.; Walton, S.; Delahaye, E.; Harris, J.; Storchak, D. A.; Chen, M. Categorical colormap optimization with visualization case studies. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 1, 871-880, 2017.
[18]
Lin, S.; Hanrahan, P. Modeling how people extract color themes from images. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 3101-3110, 2013.
[19]
Poco, J.; Mayhua, A.; Heer, J. Extracting and retargeting color mappings from bitmap images of visualizations. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 1, 637-646, 2018.
[20]
Chang, H. W.; Fried, O.; Liu, Y. M.; DiVerdi, S.; Finkelstein, A. Palette-based photo recoloring. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 139, 2015.
[21]
Tan, J. C.; Lien, J. M.; Gingold, Y. Decomposing images into layers via RGB-space geometry. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 7, 2017.
[22]
Tan, J. C.; Echevarria, J.; Gingold, Y. Efficient palette-based decomposition and recoloring of images via RGBXY-space geometry. ACM Transactions on Graphics Vol. 37, No. 6, Article No. 262, 2018.
[23]
Aksoy, Y.; Aydin, T. O.; Smolić, A.; Pollefeys, M. Unmixing-based soft color segmentation for image manipulation. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 19, 2017.
[24]
Zhang, Q.; Xiao, C. X.; Sun, H. Q.; Tang, F. Palette-based image recoloring using color decomposition optimization. IEEE Transactions on Image Processing Vol. 26, No. 4, 1952-1964, 2017.
[25]
Nguyen, R. M. H.; Price, B.; Cohen, S.; Brown, M. S. Group-theme recoloring for multi-image color consistency. Computer Graphics Forum Vol. 36, No. 7, 83-92, 2017.
[26]
Phan, H. Q.; Fu, H. B.; Chan, A. B. Color orchestra: Ordering color palettes for interpolation and prediction. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 6, 1942-1955, 2018.
[27]
Setlur, V.; Stone, M. C. A linguistic approach to categorical color assignment for data visualization. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 1, 698-707, 2016.
[28]
Lee, S.; Sips, M.; Seidel, H. P. Perceptually driven visibility optimization for categorical data visualization. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 10, 1746-1757, 2013.
[29]
Bohra, M.; Gandhi, V. ColorArt: Suggesting colorizations for graphic arts using optimal color-graph matching. In: Proceedings of the Graphics Interface, 95-102, 2020.
[30]
Sharma, G.; Wu, W. C.; Dalal, E. N. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research & Application Vol. 30, No. 1, 21-30, 2005.
[31]
Stone, M.; Szafir, D. A.; Setlur, V. An engineering model for color difference as a function of size. In: Proceedings of the Color and Imaging Conference, 253-258, 2014.
[32]
Leordeanu, M.; Hebert, M.; Sukthankar, R. An integer projected fixed point method for graph matching and MAP inference. In: Proceedings of the 22nd International Conference on Neural Information Processing Systems, 1114-1122, 2009.
[33]
Bridson, R. Fast Poisson disk sampling in arbitrary dimensions. In: Proceedings of the ACM SIGGRAPH Sketches, 22-es, 2007.
[34]
Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE Vol. 86, No. 11, 2278-2324, 1998.
[35]
Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research Vol. 9, No. 86, 2579-2605, 2008.
[36]
Shapira, L.; Shamir, A.; Cohen-Or, D. Image appearance exploration by model-based navigation. Computer Graphics Forum Vol. 28, No. 2, 629-638, 2009.
[37]
TinEye. Color extraction. 2021. Available at https://labs.tineye.com/color/.
[38]
Shugrina, M.; Kar, A.; Fidler, S.; Singh, K. Nonlinear color triads for approximation, learning and direct manipulation of color distributions. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 97, 2020.
Computational Visual Media
Pages 613-629
Cite this article:
Zheng Q, Lu M, Wu S, et al. Image-guided color mapping for categorical data visualization. Computational Visual Media, 2022, 8(4): 613-629. https://doi.org/10.1007/s41095-021-0258-0

1254

Views

61

Downloads

7

Crossref

5

Web of Science

8

Scopus

1

CSCD

Altmetrics

Received: 01 July 2021
Accepted: 01 October 2021
Published: 27 May 2022
© The Author(s) 2022.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www. editorialmanager.com/cvmj.

Return