PDF (6.2 MB)
Collect
Submit Manuscript
Research Article | Open Access

A two-step surface-based 3D deep learning pipeline for segmentation of intracranial aneurysms

The University of Tokyo, 7 Chome-3-1 Hongo, Bunkyo City, Tokyo 113-8654, Japan
Jilin University, No. 2699, Qianjin Road, Changchun, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The exact shape of intracranial aneurysms is critical in medical diagnosis and surgical planning. While voxel-based deep learning frameworks have been proposed for this segmentation task, their performance remains limited. In this study, we offer a two-step surface-based deep learning pipeline that achieves significantly better results. Our proposed model takes a surface model of an entire set of principal brain arteries containing aneurysms as input and returns aneurysm surfaces as output. A user first generates a surface model by manually specifying multiple thresholds for time-of-flight magnetic resonance angiography images. The system then samples small surface fragments from the entire set of brain arteries and classifies the surface fragments according to whether aneurysms are present using a point-based deep learning network (PointNet++). Finally, the system applies surface segmentation (SO-Net) to surface fragments containing aneurysms. We conduct a direct comparison of the segmentation performance of our proposed surface-based framework and an existing voxel-based method by counting voxels: our framework achieves a much higher Dice similarity (72%) than the prior approach (46%).

Electronic Supplementary Material

Video
41095_0270_ESM.mp4

References

[1]
The UCAS Japan Investigators. The natural course of unruptured cerebral aneurysms in a Japanese cohort. New England Journal of Medicine Vol. 366, No. 26, 24742482, 2012.
[2]
Alaraj, A.; Luciano, C. J.; Bailey, D. P.; Elsenousi, A.; Roitberg, B. Z.; Bernardo, A.; Banerjee, P. P.; Charbel, F. T. Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback. Neurosurgery Vol. 11, No. 1, 5258, 2015.
[3]
Nikravanshalmani, A.; Qanadli, S. D.; Ellis, T. J.; Crocker, M.; Ebrahimdoost, Y.; Karamimohammadi, M.; Dehmeshki, J. Three-dimensional semi-automatic segmentation of intracranial aneurysms in CTA. In: Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine, 14, 2010.
[4]
Law, M. W. K.; Chung, A. C. S. Segmentation of intracranial vessels and aneurysms in phase contrast magnetic resonance angiography using multirange filters and local variances. IEEE Transactions on Image Processing Vol. 22, No. 3, 845859, 2013.
[5]
Park, A.; Chute, C.; Rajpurkar, P.; Lou, J.; Ball, R. L.; Shpanskaya, K.; Jabarkheel, R.; Kim, L. H.; McKenna, E.; Tseng, J.; et al. Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet model. JAMA Network Open Vol. 2, No. 6, e195600, 2019.
[6]
Sichtermann, T.; Faron, A.; Sijben, R.; Teichert, N.; Freiherr, J.; Wiesmann, M. Deep learning-based detection of intracranial aneurysms in 3D TOF-MRA. American Journal of Neuroradiology Vol. 40, No. 1, 2532, 2019.
[7]
Yang, X.; Xia, D.; Kin, T.; Igarashi, T. IntrA: 3D intracranial aneurysm dataset for deep learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 26532663, 2020.
[8]
Bizjak, Ž.; Likar, B.; Pernuš, F.; Špiclin, Ž. Vascular surface segmentation for intracranial aneurysm iso-lation and quantification. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. Lecture Notes in Computer Science, Vol. 12266. Springer Cham, 128137, 2020.
[9]
Nakao, T.; Hanaoka, S.; Nomura, Y.; Sato, I.; Nemoto, M.; Miki, S.; Maeda, E.; Yoshikawa, T.; Hayashi, N.; Abe, O. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography. Journal of Magnetic Resonance Imaging Vol. 47, No. 4, 948953, 2018.
[10]
Ueda, D.; Yamamoto, A.; Nishimori, M.; Shimono, T.; Doishita, S.; Shimazaki, A.; Katayama, Y.; Fukumoto, S.; Choppin, A.; Shimahara, Y.; et al. Deep learning for MR angiography: Automated detection of cerebral aneurysms. Radiology Vol. 290, No. 1, 187194, 2019.
[11]
Zhou, M.; Wang, X.; Wu, Z.; Pozo, J. M.; Frangi, A. F. Intracranial aneurysm detection from 3D vascular mesh models with ensemble deep learning. In: Medical Image Computing and Computer Assisted Intervention –MICCAI 2019. Lecture Notes in Computer Science, Vol. 11767. Springer Cham, 243252, 2019.
[12]
Nikravanshalmani, A.; Karamimohammdi, M.; Dehmeshki, J. Segmentation and separation of cerebral aneurysms: A multi-phase approach. In: Proceedings of the 8th International Symposium on Image and Signal Processing and Analysis, 505510, 2013.
[13]
Law, M. W. K.; Chung, A. C. S. Vessel and intracranial aneurysm segmentation using multi-range filters and local variances. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007. Lecture Notes in Computer Science, Vol. 4791. Ayache, N.; Ourselin, S.; Maeder, A. Eds. Springer Berlin Heidelberg, 866874, 2007.
[14]
Wang, Y.; Zhang, Y.; Navarro, L.; Eker, O. F.; Corredor Jerez, R. A.; Chen, Y.; Zhu, Y.; Courbebaisse, G. Multilevel segmentation of intracranial aneurysms in CT angiography images. Medical Physics Vol. 43, No. 4, 17771786, 2016.
[15]
Sulayman, N.; Al-Mawaldi, M.; Kanafani, Q. Semi-automatic detection and segmentation algorithm of saccular aneurysms in 2D cerebral DSA images. The Egyptian Journal of Radiology and Nuclear Medicine Vol. 47, No. 3, 859865, 2016.
[16]
Dakua, S. P.; Abinahed, J.; Al-Ansari, A. A PCA-based approach for brain aneurysm segmentation. Multidimensional Systems and Signal Processing Vol. 29, No. 1, 257277, 2018.
[17]
Jerman, T.; Chien, A.; Pernus, F.; Likar, B.; Spiclin, Z. Automated cutting plane positioning for intracranial aneurysm quantification. IEEE Transactions on Biomedical Engineering Vol. 67, No. 2, 577587, 2020.
[18]
Podgorsak, A. R.; Rava, R. A.; Shiraz Bhurwani, M. M.; Chandra, A. R.; Davies, J. M.; Siddiqui, A. H.; Ionita, C. N. Automatic radiomic feature extraction using deep learning for angiographic parametric imaging of intracranial aneurysms. Journal of Neurointerventional Surgery Vol. 12, No. 4, 417421, 2020.
[19]
Kamnitsas, K.; Ledig, C.; Newcombe, V. F. J.; Simpson, J. P.; Kane, A. D.; Menon, D. K.; Rueckert, D.; Glocker, B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical Image Analysis Vol. 36, 6178, 2017.
[20]
Charles, R. Q.; Hao, S.; Mo, K. C.; Guibas, L. J. PointNet: Deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7785, 2017.
[21]
Guo, M. H.; Cai, J. X.; Liu, Z. N.; Mu, T. J.; Martin, R. R.; Hu, S. M. PCT: Point cloud transformer.Computational Visual Media Vol. 7, No. 2, 187199, 2021.
[22]
Wang, Y.; Sun, Y. B.; Liu, Z. W.; Sarma, S. E.; Bronstein, M. M.; Solomon, J. M. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics Vol. 38, No. 5, Article No. 146, 2019.
[23]
Wu, W. X.; Qi, Z. A.; Li, F. X. PointConv: Deep convolutional networks on 3D point clouds. In:Proceedings of the IEEE/CVF Conference on ComputerVision and Pattern Recognition, 96139622, 2019.
[24]
Hanocka, R.; Hertz, A.; Fish, N.; Giryes, R.; Fleishman, S.; Cohen-Or, D. MeshCNN. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 90, 2019.
[25]
Barill, G.; Dickson, N. G.; Schmidt, R.; Levin, D. I. W.; Jacobson, A. Fast winding numbers for soups and clouds. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 43, 2018.
[26]
Kin, T.; Nakatomi, H.; Shojima, M.; Tanaka, M.; Ino, K.; Mori, H.; Kunimatsu, A.; Oyama, H.; Saito, N. A new strategic neurosurgical planning tool for brainstem cavernous malformations using interactive computer graphics with multimodal fusion images. Journal of Neurosurgery Vol. 117, No. 1, 7888, 2012.
[27]
Qi, C. R.; Yi, L.; Su, H.; Guibas, L. J. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, 51055114, 2017.
[28]
Li, J. X.; Chen, B. M.; Lee, G. H. SO-net: Self-organizing network for point cloud analysis. In:Proceedings of the IEEE/CVF Conference on ComputerVision and Pattern Recognition, 93979406, 2018.
[29]
Krähenbühl, P.; Koltun, V. Efficient inference in fully connected CRFs with Gaussian edge potentials.In: Proceedings of the 24th International Conference on Neural Information Processing Systems, 109117, 2011.
Computational Visual Media
Pages 57-69
Cite this article:
Yang X, Xia D, Kin T, et al. A two-step surface-based 3D deep learning pipeline for segmentation of intracranial aneurysms. Computational Visual Media, 2023, 9(1): 57-69. https://doi.org/10.1007/s41095-022-0270-z
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return