Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Accurate and temporally consistent modeling of human bodies is essential for a wide range of applications, including character animation, understan-ding human social behavior, and AR/VR interfaces. Capturing human motion accurately from a monocular image sequence remains challenging; modeling quality is strongly influenced by temporal consistency of the captured body motion. Our work presents an elegant solution to integrating temporal constraints during fitting. This increases both temporal consistency and robustness during optimization. In detail, we derive parameters of a sequence of body models, representing shape and motion of a person. We optimize these parameters over the complete image sequence, fitting a single consistent body shape while imposing temporal consistency on the body motion, assuming body joint trajectories to be linear over short time. Our approach enables the derivation of realistic 3D body models from image sequences, including jaw pose, facial expression, and articulated hands. Our experiments show that our approach accurately estimates body shape and motion, even for challenging movements and poses. Further, we apply it to the particular application of sign language analysis, where accurate and temporally consistent motion modelling is essential, and show that the approach is well-suited to this kind of application.
1018
Views
52
Downloads
2
Crossref
3
Web of Science
2
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.