PDF (7.4 MB)
Collect
Submit Manuscript
Research Article | Open Access

Joint specular highlight detection and removal in single images via Unet-Transformer

National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
The School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Specular highlight detection and removal is a fundamental problem in computer vision and image processing. In this paper, we present an efficient end-to-end deep learning model for automatically detecting and removing specular highlights in a single image. In particular, an encoder–decoder network is utilized to detect specular highlights, and then a novel Unet-Transformer network performs highlight removal; we append transformer modules instead of feature maps in the Unet architecture. We also introduce a highlight detection module as a mask to guide the removal task. Thus, these two networks can be jointly trained in an effective manner. Thanks to the hierarchical and global properties of the transformer mechanism, our framework is able to establish relationships between continuous self-attention layers, making it possible to directly model the mapping between the diffuse area and the specular highlight area, and reduce indeterminacy within areas containing strong specular highlight reflection. Experiments on public benchmark and real-world images demonstrate that our approach outperforms state-of-the-art methods for both highlight detection and removal tasks.

References

[1]
Arbeláez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 33, No. 5, 898916, 2011.
[2]
Tao, M. W.; Su, J. C.; Wang, T. C.; Malik, J.; Ramamoorthi, R. Depth estimation and specularremoval for glossy surfaces using point and line consistency with light-field cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 38, No. 6, 11551169, 2016.
[3]
Ramadan, H.; Lachqar, C.; Tairi, H. A survey of recent interactive image segmentation methods. Computational Visual Media Vol. 6, No. 4, 355384, 2020.
[4]
Khanian, M.; Boroujerdi, A. S.; Breuß, M. Photometric stereo for strong specular highlights. Computational Visual Media Vol. 4, No. 1, 83102, 2018.
[5]
Cui, Z. P.; Gu, J. W.; Shi, B. X.; Tan, P.; Kautz, J. Polarimetric multi-view stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 369378, 2017.
[6]
Xue, M. L.; Shivakumara, P.; Zhang, C.; Xiao, Y.; Lu, T.; Pal, U.; Lopresti, D.; Yang, Z. Arbitrarily-oriented text detection in low light natural scene images. IEEE Transactions on Multimedia Vol. 23, 27062720, 2021.
[7]
Osadchy, M.; Jacobs, D. W.; Ramamoorthi, R. Using specularities for recognition. In: Proceedings of the 9th IEEE International Conference on Computer Vision, 15121519, 2003.
[8]
Li, R. Y.; Pan, J. J.; Si, Y. Q.; Yan, B.; Hu, Y.; Qin, H. Specular reflections removal for endoscopic image sequences with adaptive-RPCA decomposition. IEEE Transactions on Medical Imaging Vol. 39, No. 2, 328340, 2020.
[9]
Artusi, A.; Banterle, F.; Chetverikov, D. A survey of specularity removal methods. Computer Graphics Forum Vol. 30, No. 8, 22082230, 2011.
[10]
Shafer, S. A. Using color to separate reflection components. Color Research & Application Vol. 10, No. 4, 210218, 1985.
[11]
Shen, H. L.; Zhang, H. G.; Shao, S. J.; Xin, J. H. Chromaticity-based separation of reflection components in a single image. Pattern Recognition Vol. 41, No. 8, 24612469, 2008.
[12]
Brainard, D. H.; Freeman, W. T. Bayesian color constancy. Journal of the Optical Society of America A Vol. 14, No. 7, 13931411, 1997.
[13]
Finlayson, G. D.; Hordley, S. D.; HubeL, P. M. Color by correlation: A simple, unifying framework for color constancy. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 23, No. 11, 12091221, 2001.
[14]
Tan, R. T.; Nishino, K.; Ikeuchi, K. Color constancy through inverse-intensity chromaticity space. Journal of the Optical Society of America A Vol. 21, No. 3, 321334, 2004.
[15]
Shi, J.; Dong, Y.; Su, H.; Yu, S. X. Learning non-Lambertian object intrinsics across ShapeNet categories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 58445853, 2017.
[16]
Lin, J.; El Amine Seddik, M.; Tamaazousti, M.; Tamaazousti, Y.; Bartoli, A. Deep multi-class adversarial specularity removal. In: Image Analysis. Lecture Notes in Computer Science, Vol. 11482. Felsberg, M.; Forssén, P. E.; Sintorn, I. M.; Unger, J. Eds. Springer Cham, 315, 2019.
[17]
Muhammad, S.; Dailey, M. N.; Farooq, M.; Majeed, M. F.; Ekpanyapong, M. Spec-Net and Spec-CGAN: Deep learning models for specularity removal from faces. Image and Vision Computing Vol. 93, 103823, 2020.
[18]
Xu, Y. F.; Wei, H. P.; Lin, M. X.; Deng, Y. Y.; Sheng, K. K.; Zhang, M. D.; Tang, F.; Dong, W.; Huang, F.; Xu, C. Transformers in computational visual media: A survey. Computational Visual Media Vol. 8, No. 1, 3362, 2022.
[19]
Liu, Z.; Lin, Y. T.; Cao, Y.; Hu, H.; Wei, Y. X.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 999210002, 2021.
[20]
Maloney, L. T.; Wandell, B. A. Color constancy: A method for recovering surface spectral reflectance. Journal of the Optical Society of America A Vol. 3, No. 1, 2933, 1986.
[21]
Park, J. B.; Kak, A. C. A truncated least squares approach to the detection of specular highlights in color images. In: Proceedings of the IEEE International Conference on Robotics and Automation, 13971403, 2003.
[22]
Meslouhi, O.; Kardouchi, M.; Allali, H.; Gadi, T.; Benkaddour, Y. Automatic detection and inpainting of specular reflections for colposcopic images. Central European Journal of Computer Science Vol. 1, No. 3, 341354, 2011.
[23]
Zhang, W. M.; Zhao, X.; Morvan, J. M.; Chen, L. M. Improving shadow suppression for illumination robust face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 41, No. 3, 611624, 2019.
[24]
Hoyer, P. O. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research Vol. 5, 14571469, 2004.
[25]
Fu, G.; Zhang, Q.; Lin, Q. F.; Zhu, L.; Xiao, C. X. Learning to detect specular highlights from real-world images. In: Proceedings of the 28th ACM International Conference on Multimedia, 18731881, 2020.
[26]
Tan, P.; Quan, L.; Lin, S. Separation of highlight reflections on textured surfaces. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 18551860, 2006.
[27]
Shen, H.-L.; Cai, Q.-Y. Simple and efficient method for specularity removal in an image. Applied Optics Vol. 48, No. 14, 2711, 2009.
[28]
Shen, H. L.; Zheng, Z. H. Real-time highlight removal using intensity ratio. Applied Optics Vol. 52, No. 19, 44834493, 2013.
[29]
Yang, J. W.; Liu, L. X.; Li, S. Z. Separating specular and diffuse reflection components in the HSI color space. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, 891898, 2013.
[30]
Yang, Q. X.; Tang, J. H.; Ahuja, N. Efficient and robust specular highlight removal. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 37, No. 6, 13041311, 2015.
[31]
Akashi, Y.; Okatani, T. Separation of reflection components by sparse non-negative matrix factorization. In: Computer Vision – ACCV 2014. Lecture Notes in Computer Science, Vol. 9007. Cremers, D.; Reid, I.; Saito, H.; Yang, M. H. Eds. Springer Cham, 611625, 2015.
[32]
Guo, J.; Zhou, Z. J.; Wang, L. M. Single image highlight removal with a sparse and low-rank reflection model. In: Computer Vision – ECCV 2018. Lecture Notes in Computer Science, Vol. 11208. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 282298, 2018.
[33]
Fu, G.; Zhang, Q.; Song, C. F.; Lin, Q. F.; Xiao, C. X. Specular highlight removal for real-world images. Computer Graphics Forum Vol. 38, No. 7, 253263, 2019.
[34]
Nayar, S. K.; Fang, X. S.; Boult, T. Separation of reflection components using color and polarization. International Journal of Computer Vision Vol. 21, No. 163–186, 1997.
[35]
Umeyama, S.; Godin, G. Separation of diffuse and specular components of surface reflection by use of polarization and statistical analysis of images. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 26, No. 5, 639647, 2004.
[36]
Wang, F.; Ainouz, S.; Petitjean, C.; Bensrhair, A. Specularity removal: A global energy minimization approach based on polarization imaging. Computer Vision and Image Understanding Vol. 158, 3139, 2017.
[37]
Wen, S.; Zheng, Y.; Lu, F. Polarization guided specular reflection separation. IEEE Transactions on Image Processing Vol. 30, 72807291, 2021.
[38]
Sapiro, G. Color and illuminant voting. IEEE Trans-actions on Pattern Analysis and Machine Intelligence Vol. 21, No. 11, 12101215, 1999.
[39]
Imai, Y.; Kato, Y.; Kadoi, H.; Horiuchi, T.; Tominaga, S. Estimation of multiple illuminants based on specular highlight detection. In: Computational Color Imaging. Lecture Notes in Computer Science, Vol. 6626. Schettini, R.; Tominaga, S.; Trémeau, A. Eds. Springer Berlin Heidelberg, 8598, 2011.
[40]
Forsyth, D. A. A novel algorithm for color constancy. International Journal of Computer Vision Vol. 5, No. 1, 535, 1990.
[41]
Hansen, T.; Olkkonen, M.; Walter, S.; Gegenfurtner, K. R. Memory modulates color appearance. Nature Neuroscience Vol. 9, No. 11, 13671368, 2006.
[42]
Joze, H. R. V.; Drew, M. S. Exemplar-based color constancy and multiple illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 36, No. 5, 860873, 2014.
[43]
Lin, P.; Quan, L.; Shum, H.-Y. Highlight removal by illumination-constrained inpainting. In: Proceedings of the 9th IEEE International Conference on Computer Vision, 164169, 2003.
[44]
Tan, R. T.; Ikeuchi, K. Separating reflection components of textured surfaces using a single image. In: Digitally Archiving Cultural Objects. Springer Boston MA, 353384, 2008.
[45]
Tan, T. T.; Nishino, K.; Ikeuchi, K. Illumination chromaticity estimation using inverse-intensity chromaticity space. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, I, 2003.
[46]
Funke, I.; Bodenstedt, S.; Riediger, C.; Weitz, J.; Speidel, S. Generative adversarial networks for specular highlight removal in endoscopic images. In: Proceedings of the SPIE 10576, Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling, 1057604, 2018.
[47]
Wu, Z. Q.; Zhuang, C. Q.; Shi, J.; Xiao, J.; Guo, J. W. Deep specular highlight removal for single real-world image. In: Proceedings of the SIGGRAPH Asia 2020 Posters, Article No. 34, 2020.
[48]
Wu, Z. Q.; Zhuang, C. Q.; Shi, J.; Guo, J. W.; Xiao, J.; Zhang, X. P.; Yan, D.-M. Single-image specular highlight removal via real-world dataset construction. IEEE Transactions on Multimedia Vol. 24, 37823793, 2022.
[49]
Yi, R. J.; Tan, P.; Lin, S. Leveraging multi-view image sets for unsupervised intrinsic image decomposition and highlight separation. Proceedings of the AAAI Conference on Artificial Intelligence Vol. 34, No. 7, 1268512692, 2020.
[50]
Fu, G.; Zhang, Q.; Zhu, L.; Li, P.; Xiao, C. X. A multi-task network for joint specular highlight detection and removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 77487757, 2021.
[51]
Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Lecture Notes in Computer Science, Vol. 9351. Navab, N.; Hornegger, J.; Wells, W.; Frangi, A. Eds. Springer Cham, 234241, 2015.
[52]
Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-Unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv: 2105.05537, 2021.
[53]
Wei, K. X.; Yang, J. L.; Fu, Y.; Wipf, D.; Huang, H. Single image reflection removal exploiting misaligned training data and network enhancements. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 81708179, 2019.
[54]
Gatys, L. A.; Ecker, A. S.; Bethge, M. Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 24142423, 2016.
[55]
Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv: 1409.1556, 2014.
[56]
Murmann, L.; Gharbi, M.; Aittala, M.; Durand, F. A dataset of multi-illumination images in the wild. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 40794088, 2019.
[57]
Guo, X. J.; Cao, X. C.; Ma, Y. Robust separation of reflection from multiple images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 21952202, 2014.
[58]
Kingma, D. P.; Ba, J. Adam: A method for stochastic optimization. In: Proceedings of the 3rd International Conference for Learning Representations, 2015.
[59]
Yamamoto, T.; Kitajima, T.; Kawauchi, R. Efficient improvement method for separation of reflection components based on an energy function. In: Proceedings of the IEEE International Conference on Image Processing, 42224226, 2017.
[60]
Hou, S.; Wang, C.; Quan, W.; Jiang, J.; Yan, D. M. Text-aware single image specular highlight removal. In: Pattern Recognition and Computer Vision. Lecture Notes in Computer Science, Vol. 13022. Springer Cham, 115127, 2021.
Computational Visual Media
Pages 141-154
Cite this article:
Wu Z, Guo J, Zhuang C, et al. Joint specular highlight detection and removal in single images via Unet-Transformer. Computational Visual Media, 2023, 9(1): 141-154. https://doi.org/10.1007/s41095-022-0273-9
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return