Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In this paper, we tackle the challenging problem of point cloud completion from the perspective of feature learning. Our key observation is that to recover the underlying structures as well as surface details, given partial input, a fundamental component is a good feature representation that can capture both global structure and local geometric details. We accordingly first propose FSNet, a feature structuring module that can adaptively aggregate point-wise features into a 2D structured feature map by learning multiple latent patterns from local regions. We then integrate FSNet into a coarse-to-fine pipeline for point cloud completion. Specifically, a 2D convolutional neural network is adopted to decode feature maps from FSNet into a coarse and complete point cloud. Next, a point cloud upsampling network is used to generate a dense point cloud from the partial input and the coarse intermediate output. To efficiently exploit local structures and enhance point distribution uniformity, we propose IFNet, a point upsampling module with a self-correction mechanism that can progressively refine details of the generated dense point cloud. We have conducted qualitative and quantitative experiments on ShapeNet, MVP, and KITTI datasets, which demonstrate that our method outperforms state-of-the-art point cloud completion approaches.
983
Views
71
Downloads
9
Crossref
8
Web of Science
8
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.