Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
3D morphable models (3DMMs) are generative models for face shape and appearance. Recent works impose face recognition constraints on 3DMM shape parameters so that the face shapes of the same person remain consistent. However, theshape parameters of traditional 3DMMs satisfy the multivariate Gaussian distribution. In contrast, the identity embeddings meet the hypersphere distribution, and this conflict makes it challenging for face reconstruction models to preserve the faithfulness and the shape consistency simultaneously. In other words, recognition loss and reconstruction loss can not decrease jointly due to their conflict distribution. To address this issue, we propose the Sphere Face Model (SFM), a novel 3DMM for monocular face reconstruction, preserving both shape fidelity and identity consistency. The core of our SFM is the basis matrix which can be used to reconstruct 3D face shapes, and the basic matrix is learned by adopting a two-stage training approach where 3D and 2D training data are used in the first and second stages, respectively. We design a novel loss to resolve the distribution mismatch, enforcing that the shape parameters have the hyperspherical distribution. Our model accepts 2Dand 3D data for constructing the sphere face models. Extensive experiments show that SFM has high representation ability and clustering performance in its shape parameter space. Moreover, it produces high-fidelity face shapes consistently in challenging conditions in monocular face reconstruction. The code will be released at https://github.com/a686432/SIR
8109
Views
107
Downloads
5
Crossref
6
Web of Science
6
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.