AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

An anisotropic Chebyshev descriptor and its optimization for deformable shape correspondence

School of Mathematics and Statistics, Central South University, Changsha 410000, China
State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China, and School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 101408, China
School of Mathematics and Statistics, Hunan First Normal University, Changsha 410000, China
Big Data Institute, Central South University, Changsha 410000, China
Show Author Information

Graphical Abstract

Abstract

Shape descriptors have recently gained popularity in shape matching, statistical shape mode-ling, etc. Their discriminative ability and efficiency play a decisive role in these tasks. In this paper, we first propose a novel handcrafted anisotropic spectral descriptor using Chebyshev polynomials, called the anisotropic Chebyshev descriptor (ACD); it can effec-tively capture shape features in multiple directions. The ACD inherits many good characteristics of spectral descriptors, such as being intrinsic, robust to changes in surface discretization, etc. Furthermore, due to the orthogonality of Chebyshev polynomials, the ACD is compact and can disambiguate intrinsic symmetry since several directions are considered. To improve the ACD’s discrimination ability, we construct a Chebyshev spectral manifold convolutional neural network (CSMCNN) that optimizes the ACD and produces a learned ACD. Our experimental results show that the ACD outperforms existing state-of-the-art handcrafted descriptors. The combination of the ACD and the CSMCNN is better than other state-of-the-art learned descriptors in terms of discrimination, efficiency, and robustness to changes in shape resolution and discretization.

References

[1]
Donati, N.; Sharma, A.; Ovsjanikov, M. Deep geometric functional maps: Robust feature learning for shape correspondence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 85898598, 2020.
[2]
Hu, L.; Li, Q. S.; Liu, S. J.; Liu, X. R. Efficientdeformable shape correspondence via multiscale spectral manifold wavelets preservation. In: Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1453114540, 2021.
[3]
Wu, H. Y.; Pan, C. H.; Zha, H. B.; Yang, Q.; Ma, S. D. Partwise cross-parameterization via nonregular convex hull domains. IEEE Transactions on Visualization and Computer Graphics Vol. 17, No. 10, 15311544, 2011.
[4]
Kwok, T. H.; Zhang, Y. B.; Wang, C. C. L. Efficient optimization of common base domains for cross parameterization. IEEE Transactions on Visualization and Computer Graphics Vol. 18, No. 10, 16781692, 2012.
[5]
Fu, Y. P.; Yan, Q. G.; Liao, J.; Xiao, C. X. Joint texture and geometry optimization for RGB-D reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 59495958, 2020.
[6]
Xiao, X. Y.; Joshi, S.; Cecil, J. Critical assessment of shape retrieval tools (SRTs). The International Journal of Advanced Manufacturing Technology Vol. 116, Nos. 11–12, 34313446, 2021.
[7]
Qiu, S.; Anwar, S.; Barnes, N. Semantic segmentation for real point cloud scenes via bilateral augmentation and adaptive fusion. In: Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition, 17571767, 2021.
[8]
Wang, Y. F.; Aigerman, N.; Kim, V. G.; Chaudhuri, S.; Sorkine-Hornung, O. Neural cages for detail-preserving 3D deformations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7280, 2020.
[9]
Gao, L.; Zhang, L. X.; Meng, H. Y.; Ren, Y. H.; Lai, Y. K.; Kobbelt, L. PRS-net: Planar reflective symmetry detection net for 3D models. IEEE Transactions on Visualization and Computer Graphics Vol. 27, No. 6, 30073018, 2021.
[10]
Sun, J.; Ovsjanikov, M.; Guibas, L. A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum Vol. 28, No. 5, 13831392, 2009.
[11]
Aubry, M.; Schlickewei, U.; Cremers, D. The wave kernel signature: A quantum mechanical approach to shape analysis. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, 16261633, 2011.
[12]
Shuman, D. I.; Ricaud, B.; Vandergheynst, P. Vertex-frequency analysis on graphs. Applied and Computational Harmonic Analysis Vol. 40, No. 2, 260291, 2016.
[13]
Wang, Y. Q.; Ren, J.; Yan, D. M.; Guo, J. W.; Zhang, X. P.; Wonka, P. MGCN: Descriptor learning using multiscale GCNs. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 122, 2020.
[14]
Andreux, M.; Rodolà, E.; Aubry, M.; Cremers, D. Anisotropic Laplace–Beltrami operators for shape analysis. In: Computer Vision - ECCV 2014 Workshops. Lecture Notes in Computer Science, Vol. 8928. Agapito, L.; Bronstein, M.; Rother, C. Eds. Springer Cham, 299312, 2015.
[15]
Boscaini, D.; Masci, J.; Rodolà, E.; Bronstein, M. M.; Cremers, D. Anisotropic diffusion descriptors. Computer Graphics Forum Vol. 35, No. 2, 431441, 2016.
[16]
Melzi, S.; Rodolà, E.; Castellani, U.; Bronstein, M. M. Shape analysis with anisotropic windowed Fourier transform. In: Proceedings of the 4th International Conference on 3D Vision, 470478, 2016.
[17]
Li, Q. S.; Hu, L.; Liu, S. J.; Yang, D. F.; Liu, X. R. Anisotropic spectral manifold wavelet descriptor. Computer Graphics Forum Vol. 40, No. 1, 8196, 2021.
[18]
Litman, R.; Bronstein, A. M. Learning spectral descriptors for deformable shape correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 36, No. 1, 171180, 2014.
[19]
Fey, M.; Lenssen, J. E.; Weichert, F.; Müller, H. SplineCNN: Fast geometric deep learning with continuous B-spline kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 869877, 2018.
[20]
Li, Q. S.; Liu, S. J.; Hu, L.; Liu, X. R. Shape correspondence using anisotropic Chebyshev spectral CNNs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1464614655, 2020.
[21]
Vallet, B.; Lévy, B. Spectral geometry processing with manifold harmonics. Computer Graphics Forum Vol. 27, No. 2, 251260, 2008.
[22]
Guo, Y. L.; Bennamoun, M.; Sohel, F.; Lu, M.; Wan, J. W.; Kwok, N. M. A comprehensive performance evaluation of 3D local feature descriptors. International Journal of Computer Vision Vol. 116, No. 1, 6689, 2016.
[23]
Johnson, A. E.; Hebert, M. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 21, No. 5, 433449, 1999.
[24]
Salti, S.; Tombari, F.; Di Stefano, L. SHOT: Unique signatures of histograms for surface and texture description. Computer Vision and Image Understanding Vol. 125, 251264, 2014.
[25]
Hu, L.; Li, Q. S.; Liu, S.; Liu, X. Spectral graph wavelet descriptor for three-dimensional shape matching. Journal of ZheJiang University (Engineering Science) Vol. 53, No. 4, 761769, 2019.
[26]
Wang, Y. Q.; Guo, J. W.; Yan, D. M.; Wang, K.; Zhang, X. P. A robust local spectral descriptor for matching non-rigid shapes with incompatible shape structures. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 62246233, 2019.
[27]
Hammond, D. K.; Vandergheynst, P.; Gribonval, R. Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis Vol. 30, No. 2, 129150, 2011.
[28]
Sun, Z. Y.; He, Y. S.; Gritsenko, A.; Lendasse, A.; Baek, S. Embedded spectral descriptors: Learning the point-wise correspondence metric via Siamese neural networks. Journal of Computational Design and Engineering Vol. 7, No. 1, 1829, 2020.
[29]
Guo, J. W.; Wang, H. Y.; Cheng, Z. L.; Zhang, X. P.; Yan, D. M. Learning local shape descriptors for computing non-rigid dense correspondence. Computational Visual Media Vol. 6, No. 1, 95112, 2020.
[30]
Tan, Q. Y.; Zhang, L. X.; Yang, J.; Lai, Y. K.; Gao, L. Variational autoencoders for localized mesh deformation component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 44, No. 10, 62976310, 2022.
[31]
Masci, J.; Boscaini, D.; Bronstein, M. M.; Vander-gheynst, P. Geodesic convolutional neural networks on Riemannian manifolds. In: Proceedings of the IEEE International Conference on Computer Vision Workshop, 832840, 2015.
[32]
Xiao, Y. P.; Lai, Y. K.; Zhang, F. L.; Li, C. P.; Gao, L. A survey on deep geometry learning: From a representation perspective. Computational Visual Media Vol. 6, No. 2, 113133, 2020.
[33]
Sharp, N.; Attaiki, S.; Crane, K.; Ovsjanikov, M. DiffusionNet: Discretization agnostic learning on surfaces. ACM Transactions on Graphics Vol. 41, No. 3, Article No. 27, 2022.
[34]
Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, 38443852, 2016.
[35]
Bogo, F.; Romero, J.; Loper, M.; Black, M. J. FAUST: Dataset and evaluation for 3D mesh registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 37943801, 2014.
[36]
Bronstein, A. M.; Bronstein, M. M.; Kimmel, R. Numerical Geometry of Non-Rigid Shapes. New York: Springer, 2009.
[37]
Melzi, S.; Marin, R.; Rodolà, E.; Castellani, U.; Ren, J.; Poulenard, A.; Wonka, P.; Ovsjanikov, M. Matching humans with different connectivity. In: Proceedings of the Eurographics Workshop on 3D Object Retrieval, 121128, 2019.
[38]
Ren, J.; Poulenard, A.; Wonka, P.; Ovsjanikov, M. Continuous and orientation-preserving correspondences via functional maps. ACM Transactions on Graphics Vol. 37, No. 6, Article No. 248, 2018.
[39]
Anguelov, D.; Srinivasan, P.; Koller, D.; Thrun, S.; Rodgers, J.; Davis, J. SCAPE: Shape completion and animation of people. ACM Transactions on Graphics Vol. 24, No. 3, 408416, 2005.
[40]
Robinette, K. M.; Daanen, H.; Paquet, E. The CAESAR project: A 3-D surface anthropometry survey. In: Proceedings of the 2nd International Conference on 3-D Digital Imaging and Modeling, 380386, 1999.
[41]
Pickup, D.; Sun, X.; Rosin, P. L.; Martin, R.; Cheng, Z.; Lian, Z.; Aono, M.; Ben Hamza, A.; Bronstein, A.; Bronstein, M.; et al. Shape retrieval of non-rigid 3D human models. International Journal of Computer Vision Vol. 120, 169193, 2016.
[42]
Melzi, S.; Ovsjanikov, M.; Roffo, G.; Cristani, M.; Castellani, U. Discrete time evolution process descriptor for shape analysis and matching. ACM Transactions on Graphics Vol. 37, No. 1, Article No. 4, 2018.
[43]
Cosmo, L.; Minello, G.; Bronstein, M.; Rossi, L.; Torsello, A. The average mixing kernel signature. In: Computer Vision – ECCV 2020. Lecture Notes in Computer Science, Vol. 12365. Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds. Springer Cham, 117, 2020.
[44]
Wang, Y. Q.; Yan, D. M.; Liu, X. H.; Tang, C. C.; Guo, J. W.; Zhang, X. P.; Wonka, P. Isotropic surface remeshing without large and small angles. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 7, 24302442, 2019.
[45]
Yan, D. M.; Bao, G. B.; Zhang, X. P.; Wonka, P. Low-resolution remeshing using the localized restricted Voronoi diagram. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 10, 14181427, 2014.
Computational Visual Media
Pages 461-477
Cite this article:
Liu S, Liu H, Chen W, et al. An anisotropic Chebyshev descriptor and its optimization for deformable shape correspondence. Computational Visual Media, 2023, 9(3): 461-477. https://doi.org/10.1007/s41095-022-0290-8

1002

Views

25

Downloads

1

Crossref

1

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 17 February 2022
Accepted: 28 April 2022
Published: 21 March 2023
© The Author(s) 2023.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.

Return