Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Shape descriptors have recently gained popularity in shape matching, statistical shape mode-ling, etc. Their discriminative ability and efficiency play a decisive role in these tasks. In this paper, we first propose a novel handcrafted anisotropic spectral descriptor using Chebyshev polynomials, called the anisotropic Chebyshev descriptor (ACD); it can effec-tively capture shape features in multiple directions. The ACD inherits many good characteristics of spectral descriptors, such as being intrinsic, robust to changes in surface discretization, etc. Furthermore, due to the orthogonality of Chebyshev polynomials, the ACD is compact and can disambiguate intrinsic symmetry since several directions are considered. To improve the ACD’s discrimination ability, we construct a Chebyshev spectral manifold convolutional neural network (CSMCNN) that optimizes the ACD and produces a learned ACD. Our experimental results show that the ACD outperforms existing state-of-the-art handcrafted descriptors. The combination of the ACD and the CSMCNN is better than other state-of-the-art learned descriptors in terms of discrimination, efficiency, and robustness to changes in shape resolution and discretization.
1002
Views
25
Downloads
1
Crossref
1
Web of Science
0
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.