Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Lighting is crucial for portrait photography, yet the complex interactions between the skin and incident light are expensive to model computationally in graphics and difficult to reconstruct analytically via computer vision. Alternatively, to allow fast and controllable reflectance and lighting editing, we developed a physically based decomposition through deep learned priors from path-traced portrait images. Previous approaches that used simplified material models or low-frequency or low-dynamic-range lighting struggled to model specular reflections or relight directly without intermediate decomposition. However, we estimate the surface normal, skin albedo and roughness, and high-frequency HDRI maps, and propose an architecture to estimate both diffuse and specular reflectance components. In our experiments, we show that this approach can represent the true appearance function more effectively than simpler baseline methods, leading to better generalization and higher-quality editing.
380
Views
33
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.