PDF (3 MB)
Collect
Submit Manuscript
Review Article | Open Access

3D face recognition: A comprehensive survey in 2022

The School of Information Technology, Deakin University, Waurn Ponds, VIC, Australia
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

In the past ten years, research on facerecognition has shifted to using 3D facial surfaces, as 3D geometric information provides more discriminative features. This comprehensive survey reviews 3D face recognition techniques developed in the past decade, both conventional methods and deep learning methods. These methods are evaluated with detailed descriptions of selected representative works. Their advantages and disadvantages are summarized in terms of accuracy, complexity, and robustness to facial variations (expression, pose, occlusion, etc.). A review of 3D face databases is also provided, and a discussion of future research challenges and directions of the topic.

References

[1]
Patil, H.; Kothari, A.; Bhurchandi, K. 3-D face recognition: Features, databases, algorithms and challenges. Artificial Intelligence Review Vol. 44, No. 3, 393441, 2015.
[2]
Zhou, H. L.; Mian, A.; Wei, L.; Creighton, D.; Hossny, M.; Nahavandi, S. Recent advances on singlemodal and multimodal face recognition: A survey. IEEE Transactions on Human-Machine Systems Vol. 44, No. 6, 701716, 2014.
[3]
Bowyer, K. W.; Chang, K.; Flynn, P. A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Computer Vision and Image Understanding Vol. 101, No. 1, 115, 2006.
[4]
Huang, G. B.; Mattar, M.; Berg, T.; Learned-Miller, E. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. In: Proceedings of the Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition,2008.
[5]
Cai, Y.; Lei, Y. J.; Yang, M. L.; You, Z. S.; Shan, S. G. A fast and robust 3D face recognition approach based on deeply learned face representation. Neurocomputing Vol. 363, 375397, 2019.
[6]
Zhou, S.; Xiao, S. 3D face recognition: A survey. Human-Centric Computing and Information Sciences Vol. 8, No. 1, 35, 2018.
[7]
Blackburn, D. M.; Bone, M.; Phillips, P. J. Face recognition vendor test 2000: Evaluation report. Technical report. Defense Advanced Research Projects Agency Arlington VA, 2001.
[8]
Phillips, P. J.; Grother, P.; Micheals, R.; Blackburn, D. M.; Tabassi, E.; Bone, M. Face recognition vendor test 2002. In: Proceedings of the IEEE International SOI Conference, 44, 2003.
[9]
Phillips, P. J.; Flynn, P. J.; Scruggs, T.; Bowyer, K. W.; Chang, J.; Hoffman, K.; Marques, J.; Min, J.; Worek, W. Overview of the face recognition grand challenge. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 947954, 2005.
[10]
Phillips, P. J.; Scruggs, W. T.; O’Toole, A. J.; Flynn, P. J.; Bowyer, K. W.; Schott, C. L.; Sharpe, M. FRVT 2006 and ICE 2006 large-scale experimental results. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 32, No. 5, 831846, 2010.
[11]
Abate, A. F.; Nappi, M.; Riccio, D.; Sabatino, G. 2D and 3D face recognition: A survey. Pattern Recognition Letters Vol. 28, No. 14, 18851906, 2007.
[12]
Smeets, D.; Claes, P.; Hermans, J.; Vandermeulen, D.; Suetens, P. A comparative study of 3-D face recognition under expression variations. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) Vol. 42, No. 5, 710727, 2012.
[13]
Soltanpour, S.; Boufama, B.; Jonathan Wu, Q. M. A survey of local feature methods for 3D face recognition. Pattern Recognition Vol. 72, 391406, 2017.
[14]
Guo, G. D.; Zhang, N. A survey on deep learning based face recognition. Computer Vision and Image Understanding Vol. 189, 102805, 2019.
[15]
Masi, I.; Wu, Y.; Hassner, T.; Natarajan, P. Deep face recognition: A survey. In: Proceedings of the 31st SIBGRAPI Conference on Graphics, Patterns and Images, 471478, 2018.
[16]
Parkhi, O. M.; Vedaldi, A.; Zisserman, A. Deep face recognition. In: Proceedings of the British Machine Vision Conference, 112, 2015.
[17]
He, K. M.; Zhang, X. Y.; Ren, S. Q.; Sun, J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770778, 2016.
[18]
Lawrence, S.; Giles, C. L.; Tsoi, A. C.; Back, A. D. Face recognition: A convolutional neural-network approach. IEEE Transactions on Neural Networks Vol. 8, No. 1, 98113, 1997.
[19]
Howard, A.; Zhmoginov, A.; Chen, L. C.; Sandler, M.; Zhu, M. Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation. arXiv preprint arXiv:1801.04381,2018.
[20]
Colombo, A.; Cusano, C.; Schettini, R. UMB-DB: A database of partially occluded 3D faces. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, 21132119, 2011.
[21]
Beumier, C.; Acheroy, M. Automatic 3D face authentication. Image and Vision Computing Vol. 18, No. 4, 315321, 2000.
[22]
Hesher, C.; Srivastava, A.; Erlebacher, G. A novel technique for face recognition using range imaging. In: Proceedings of the 7th International Symposium on Signal Processing and Its Applications, 201204, 2003.
[23]
Moreno, A. GavabDB: A 3D face database. In: Proceedings of the 2nd COST275 Workshop on Biometrics on the Internet, 7580, 2004.
[24]
Chang, K. I.; Bowyer, K. W.; Flynn, P. J. An evaluation of multimodal 2D 3D face biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 27, No. 4, 619624, 2005.
[25]
Wang, Y. M.; Pan, G.; Wu, Z. H.; Wang, Y. G. Exploring facial expression effects in 3D face recognition using partial ICP. In: Computer Vision – ACCV 2006. Lecture Notes in Computer Science, Vol. 3851. Narayanan, P. J.; Nayar, S. K.; Shum, H. Y. Eds. Springer Berlin Heidelberg, 581590, 2006.
[26]
Yin, L. J.; Wei, X. Z.; Sun, Y.; Wang, J.; Rosato, M. J. A 3D facial expression database for facial behavior research. In: Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition, 211216, 2006.
[27]
Xu, C. H.; Tan, T. N.; Li, S.; Wang, Y. H.; Zhong, C. Learning effective intrinsic features to boost 3D-based face recognition. In: Computer Vision – ECCV 2006. Lecture Notes in Computer Science, Vol. 3952. Leonardis, A.; Bischof, H.; Pinz, A. Eds. Springer Berlin Heidelberg, 416427, 2006.
[28]
Conde, C.; Serrano, A.; Cabello, E. Multimodal 2D, 2.5D & 3D face verification. In: Proceedings of the International Conference on Image Processing, 20612064, 2006.
[29]
Faltemier, T. C.; Bowyer, K. W.; Flynn, P. J. Using a multi-instance enrollment representation to improve 3D face recognition. In: Proceedings of the IEEE International Conference on Biometrics: Theory, Applications, and Systems, 16, 2007.
[30]
Savran, A.; Alyüz, N.; Dibeklioğlu, H.; Çeliktutan, O.; Gökberk, B.; Sankur, B.; Akarun, L. Bosphorus database for 3D face analysis. In: Biometrics and Identity Management. Lecture Notes in Computer Science, Vol. 5372. Schouten, B.; Juul, N. C.; Drygajlo, A.; Tistarelli, M. Eds. Springer Berlin Heidelberg, 4756, 2008.
[31]
Heseltine, T.; Pears, N.; Austin, J. Three-dimensional face recognition using combinations of surface feature map subspace components. Image and Vision Computing Vol. 26, No. 3, 382396, 2008.
[32]
Ter Haar, F. B.; Daoudi, M.; Veltkamp, R. C. SHape REtrieval contest 2008: 3D face scans. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications, 225226, 2008.
[33]
Yin, B. C.; Sun, Y. F.; Wang, C. Z.; Gai, Y. BJUT-3D large scale 3D face database and information processing. Journal of Computer Research and Development Vol. 46, No. 6, 10091018, 2009. (in Chinese)
[34]
Gupta, S.; Castleman, K. R.; Markey, M. K.; Bovik, A. C. Texas 3D face recognition database. In: Proceedings of the IEEE Southwest Symposium on Image Analysis & Interpretation, 97100, 2010.
[35]
Vijayan, V.; Bowyer, K. W.; Flynn, P. J.; Huang, D.; Chen, L. M.; Hansen, M.; Ocegueda, O.; Shah, S. K.; Kakadiaris, I. A. Twins 3D face recognition challenge. In: Proceedings of the International Joint Conference on Biometrics, 17, 2011.
[36]
Veltkamp, R.; van Jole, S.; Drira, H.; Amor, B.; Daoudi, M.; Li, H. B.; Chen, L. M.; Claes, P.; Smeets, D.; Hermans, J.; et al. SHREC’11 track: 3D face models retrieval. In: Proceedings of the 4th Eurographics Conference on 3D Object Retrieval, 8995, 2011.
[37]
Zhang, Y.; Guo, Z.; Lin, Z.; Zhang, H.; Zhang, C. The NPU multi-case Chinese 3D face database and information processing. Chinese Journal of Electronics Vol. 21, No. 2, 283286, 2012.
[38]
Zhang, X.; Yin, L. J.; Cohn, J. F.; Canavan, S.; Reale, M.; Horowitz, A.; Peng, L. A high-resolution spontaneous 3D dynamic facial expression database. In: Proceedings of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, 16, 2013.
[39]
Min, R.; Kose, N.; Dugelay, J. L. KinectFaceDB: A kinect database for face recognition. IEEE Transactions on Systems, Man, and Cybernetics: Systems Vol. 44, No. 11, 15341548, 2014.
[40]
Zhang, J. J.; Huang, D.; Wang, Y. H.; Sun, J. Lock3DFace: A large-scale database of low-cost Kinect 3D faces. In: Proceedings of the International Conference on Biometrics, 18, 2016.
[41]
Urbanová, P.; Ferková, Z.; Jandová, M.; Jurda, M.; Černý, D.; Sochor, J. Introducing the FIDENTIS 3D face database. Anthropological Review Vol. 81, No. 2, 202223, 2018.
[42]
Zulqarnain Gilani, S.; Mian, A. Learning from millions of 3D scans for large-scale 3D face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18961905, 2018.
[43]
Cheng, S. Y.; Kotsia, I.; Pantic, M.; Zafeiriou, S. 4DFAB: A large scale 4D database for facial expression analysis and biometric applications. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 51175126, 2018.
[44]
Jia, S.; Li, X.; Hu, C. B.; Guo, G. D.; Xu, Z. Q. 3D face anti-spoofing with factorized bilinear coding. arXiv preprint arXiv:2005.06514, 2020.
[45]
Ye, Y. P.; Song, Z.; Guo, J. G.; Qiao, Y. SIAT-3DFE: A high-resolution 3D facial expression dataset. IEEE Access Vol. 8, 4820548211, 2020.
[46]
Yang, H. T.; Zhu, H.; Wang, Y. R.; Huang, M. K.; Shen, Q.; Yang, R. G.; Cao, X. FaceScape: A large-scale high quality 3D face dataset and detailed riggable 3D face prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 598607, 2020.
[47]
Li, Q.; Dong, X. X.; Wang, W. N.; Shan, C. F. CAS-AIR-3D face: A low-quality, multi-modal and multi-pose 3D face database. In: Proceedings of the IEEE International Joint Conference on Biometrics, 18, 2021.
[48]
Gilani, S. Z.; Mian, A. Towards large-scale 3D face recognition. In: Proceedings of the International Conference on Digital Image Computing: Techniques and Applications, 18, 2016.
[49]
Farkas, L. G. Anthropometry of the Head and Face. Raven Press, 1994.
[50]
Blanz, V.; Vetter, T. A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, 187194, 1999.
[51]
Kim, D.; Hernandez, M.; Choi, J.; Medioni, G. Deep 3D face identification. In: Proceedings of the IEEE International Joint Conference on Biometrics, 133142, 2017.
[52]
Zhang, Z. Y.; Da, F. P.; Yu, Y. Data-free point cloud network for 3D face recognition. arXiv preprint arXiv:1911.04731, 2019.
[53]
Deng, J. K.; Cheng, S. Y.; Xue, N. N.; Zhou, Y. X.; Zafeiriou, S. UV-GAN: Adversarial facial UV map completion for pose-invariant face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 70937102, 2018.
[54]
Zhao, J.; Xiong, L.; Cheng, Y.; Cheng, Y.; Li, J.; Zhou, L.; Xu, Y.; Karlekar, J.; Pranata, S.; Shen, S.; et al. 3D-aided deep pose-invariant face recognition. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, 11841190, 2018.
[55]
Shen, Y. J.; Luo, P.; Yan, J. J.; Wang, X. G.; Tang, X. O. FaceID-GAN: Learning a symmetry three-player GAN for identity-preserving face synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 821830, 2018.
[56]
Zhang, X. Y.; Zhao, Y.; Zhang, H. Dual-discriminator GAN: A GAN way of profile face recognition. In: Proceedings of the IEEE International Conference on Artificial Intelligence and Computer Applications, 162166, 2020.
[57]
Marriott, R. T.; Romdhani, S.; Chen, L. M. A 3D GAN for improved large-pose facial recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1344013450, 2021.
[58]
Luo, M. D.; Cao, J.; Ma, X.; Zhang, X. Y.; He, R. FA-GAN: Face augmentation GAN for deformation-invariant face recognition. IEEE Transactions on Information Forensics and Security Vol. 16, 23412355, 2021.
[59]
Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.
[60]
Zhao, W.; Chellappa, R.; Phillips, P. J.; Rosenfeld, A. Face recognition. ACM Computing Surveys Vol. 35, No. 4, 399458, 2003.
[61]
Berretti, S.; del Bimbo, A.; Pala, P. 3D partial face matching using local shape descriptors. In: Proceedings of the Joint ACM Workshop on Human Gesture and Behavior Understanding, 6571, 2011.
[62]
Li, H. B.; Huang, D.; Lemaire, P.; Morvan, J. M.; Chen, L. M. Expression robust 3D face recognition via mesh-based histograms of multiple order surface differential quantities. In: Proceedings of the 18th IEEE International Conference on Image Processing, 30533056, 2011.
[63]
Creusot, C.; Pears, N.; Austin, J. Automatic keypoint detection on 3D faces using a dictionary of local shapes. In: Proceedings of the International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, 204211, 2011.
[64]
Zhang, G. P.; Wang, Y. H. Robust 3D face recognition based on resolution invariant features. Pattern Recognition Letters Vol. 32, No. 7, 10091019, 2011.
[65]
Inan, T.; Halici, U. 3-D face recognition with local shape descriptors. IEEE Transactions on Information Forensics and Security Vol. 7, No. 2, 577587, 2012.
[66]
Berretti, S.; del Bimbo, A.; Pala, P. Sparse matching of salient facial curves for recognition of 3-D faces with missing parts. IEEE Transactions on Information Forensics and Security Vol. 8, No. 2, 374389, 2013.
[67]
Li, X. L.; Da, F. P. Efficient 3D face recognition handling facial expression and hair occlusion. Image and Vision Computing Vol. 30, No. 9, 668679, 2012.
[68]
Ballihi, L.; Ben Amor, B.; Daoudi, M.; Srivastava, A.; Aboutajdine, D. Boosting 3-D-geometric features for efficient face recognition and gender classification. IEEE Transactions on Information Forensics and Security Vol. 7, No. 6, 17661779, 2012.
[69]
Berretti, S.; Werghi, N.; del Bimbo, A.; Pala, P. Matching 3D face scans using interest points and local histogram descriptors. Computers & Graphics Vol. 37, No. 5, 509525, 2013.
[70]
Smeets, D.; Keustermans, J.; Vandermeulen, D.; Suetens, P. meshSIFT: Local surface features for 3D face recognition under expression variations and partial data. Computer Vision and Image Understanding Vol. 117, No. 2, 158169, 2013.
[71]
Creusot, C.; Pears, N.; Austin, J. A machine-learning approach to keypoint detection and landmarking on 3D meshes. International Journal of Computer Vision Vol. 102, Nos. 1–3, 146179, 2013.
[72]
Tang, H. L.; Yin, B. C.; Sun, Y. F.; Hu, Y. L. 3D face recognition using local binary patterns. Signal Processing Vol. 93, No. 8, 21902198, 2013.
[73]
Lei, Y. J.; Bennamoun, M.; El-Sallam, A. A. An efficient 3D face recognition approach based on the fusion of novel local low-level features. Pattern Recognition Vol. 46, No. 1, 2437, 2013.
[74]
Elaiwat, S.; Bennamoun, M.; Boussaid, F.; El-Sallam, A. 3-D face recognition using curvelet local features. IEEE Signal Processing Letters Vol. 21, No. 2, 172175, 2014.
[75]
Drira, H.; Ben Amor, B.; Srivastava, A.; Daoudi, M.; Slama, R. 3D face recognition under expressions, occlusions, and pose variations. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 35, No. 9, 22702283, 2013.
[76]
Li, H. B.; Huang, D.; Morvan, J. M.; Chen, L. M.; Wang, Y. H. Expression-robust 3D face recognition via weighted sparse representation of multi-scale and multi-component local normal patterns. Neurocomputing Vol. 133, 179193, 2014.
[77]
Berretti, S.; Werghi, N.; Bimbo, A.; Pala, P. Selecting stable keypoints and local descriptors for person identification using 3D face scans. The Visual Computer Vol. 30, No. 11, 12751292, 2014.
[78]
Lei, Y. J.; Bennamoun, M.; Hayat, M.; Guo, Y. L. An efficient 3D face recognition approach using local geometrical signatures. Pattern Recognition Vol. 47, No. 2, 509524, 2014.
[79]
Tabia, H.; Laga, H.; Picard, D.; Gosselin, P. H. Covariance descriptors for 3D shape matching and retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 41854192, 2014.
[80]
Vezzetti, E.; Marcolin, F.; Fracastoro, G. 3D face recognition: An automatic strategy based on geometrical descriptors and landmarks. Robotics and Autonomous Systems Vol. 62, No. 12, 17681776, 2014.
[81]
Li, H. B.; Huang, D.; Morvan, J. M.; Wang, Y. H.; Chen, L. M. Towards 3D face recognition in the real: A registration-free approach using fine-grained matching of 3D keypoint descriptors. International Journal of Computer Vision Vol. 113, No. 2, 128142, 2015.
[82]
Elaiwat, S.; Bennamoun, M.; Boussaid, F.; El-Sallam, A. A curvelet-based approach for textured 3D face recognition. Pattern Recognition Vol. 48, No. 4, 12351246, 2015.
[83]
Al-Osaimi, F. R. A novel multi-purpose matching representation of local 3D surfaces: A rotationally invariant, efficient, and highly discriminative approach with an adjustable sensitivity. IEEE Transactions on Image Processing Vol. 25, No. 2, 658672, 2016.
[84]
Ming, Y. Robust regional bounding spherical descriptor for 3D face recognition and emotion analysis. Image and Vision Computing Vol. 35, 1422, 2015.
[85]
Guo, Y. L.; Lei, Y. J.; Liu, L.; Wang, Y.; Bennamoun, M.; Sohel, F. EI3D: Expression-invariant 3D face recognition based on feature and shape matching. Pattern Recognition Letters Vol. 83, 403412, 2016.
[86]
Soltanpour, S.; Wu, Q. J. Multimodal 2D–3D face recognition using local descriptors: Pyramidal shape map and structural context. IET Biometrics Vol. 6, No. 1, 2735, 2017.
[87]
Lei, Y. J.; Guo, Y. L.; Hayat, M.; Bennamoun, M.; Zhou, X. Z. A Two-Phase Weighted Collaborative Representation for 3D partial face recognition with single sample. Pattern Recognition Vol. 52, 218237, 2016.
[88]
Emambakhsh, M.; Evans, A. Nasal patches and curves for expression-robust 3D face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 39, No. 5, 9951007, 2017.
[89]
Werghi, N.; Tortorici, C.; Berretti, S.; Del Bimbo, A. Boosting 3D LBP-based face recognition by fusing shape and texture descriptors on the mesh. IEEE Transactions on Information Forensics and Security Vol. 11, No. 5, 964979, 2016.
[90]
Hariri, W.; Tabia, H.; Farah, N.; Benouareth, A.; Declercq, D. 3D face recognition using covariance based descriptors. Pattern Recognition Letters Vol. 78, 17, 2016.
[91]
Soltanpour, S.; Jonathan Wu, Q. M. High-order local normal derivative pattern (LNDP) for 3D face recognition. In: Proceedings of the IEEE International Conference on Image Processing, 28112815, 2017.
[92]
Deng, X.; Da, F. P.; Shao, H. J. Efficient 3D face recognition using local covariance descriptor and Riemannian kernel sparse coding. Computers & Electrical Engineering Vol. 62, 8191, 2017.
[93]
Abbad, A.; Abbad, K.; Tairi, H. 3D face recognition: Multi-scale strategy based on geometric and local descriptors. Computers & Electrical Engineering Vol. 70, 525537, 2018.
[94]
Soltanpour, S.; Wu, Q. M. J. Weighted extreme sparse classifier and local derivative pattern for 3D face recognition. IEEE Transactions on Image Processing Vol. 28, No. 6, 30203033, 2019.
[95]
Shi, L. L.; Wang, X.; Shen, Y. L. Research on 3D face recognition method based on LBP and SVM. Optik Vol. 220, 165157, 2020.
[96]
Samir, C.; Srivastava, A.; Daoudi, M.; Klassen, E. An intrinsic framework for analysis of facial surfaces. International Journal of Computer Vision Vol. 82, No. 1, 8095, 2009.
[97]
Samir, C.; Srivastava, A.; Daoudi, M. Three-dimensional face recognition using shapes of facial curves. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 28, No. 11, 18581863, 2006.
[98]
Lowe, D. G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision Vol. 60, No. 2, 91110, 2004.
[99]
Deng, X.; Da, F.; Shao, H. J.; Jiang, Y. T. A multi-scale three-dimensional face recognition approach with sparse representation-based classifier and fusion of local covariance descriptors. Computers & Electrical Engineering Vol. 85, 106700, 2020.
[100]
Vezzetti, E.; Marcolin, F.; Tornincasa, S.; Ulrich, L.; Dagnes, N. 3D geometry-based automatic landmark localization in presence of facial occlusions. Multimedia Tools and Applications Vol. 77, No. 11, 1417714205, 2018.
[101]
Drira, H.; Benamor, B.; Daoudi, M.; Srivastava, A. Pose and expression-invariant 3D face recognition using elastic radial curves. In: Proceedings of the British Machine Vision Conference, 111, 2010.
[102]
Freund, Y.; Schapire, R. E. A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence Vol. 14, No. 5, 771780, 1999.
[103]
Aubry, M.; Schlickewei, U.; Cremers, D. The wave kernel signature: A quantum mechanical approach to shape analysis. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, 16261633, 2011.
[104]
Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 24, No. 7, 971987, 2002.
[105]
Yu, Y.; Da, F. P.; Guo, Y. F. Sparse ICP with resampling and denoising for 3D face verification. IEEE Transactions on Information Forensics and Security Vol. 14, No. 7, 19171927, 2019.
[106]
Spreeuwers, L. Fast and accurate 3D face recognition. International Journal of Computer Vision Vol. 93, No. 3, 389414, 2011.
[107]
Ocegueda, O.; Passalis, G.; Theoharis, T.; Shah, S. K.; Kakadiaris, I. A. UR3D-C: Linear dimensionality reduction for efficient 3D face recognition. In: Proceedings of the International Joint Conference on Biometrics, 16, 2011.
[108]
Ming, Y.; Ruan, Q. Q. Robust sparse bounding sphere for 3D face recognition. Image and Vision Computing Vol. 30, No. 8, 524534, 2012.
[109]
Liu, P. J.; Wang, Y. H.; Huang, D.; Zhang, Z. X.; Chen, L. M. Learning the spherical harmonic features for 3-D face recognition. IEEE Transactions on Image Processing Vol. 22, No. 3, 914925, 2013.
[110]
Taghizadegan, Y.; Ghassemian, H.; Naser-Moghaddasi, M. 3D face recognition method using 2DPCA-Euclidean distance classification. ACEEE International Journal on Control System and Instrumentation Vol. 3, No. 1, 15, 2012.
[111]
Mohammadzade, H.; Hatzinakos, D. Iterative closest normal point for 3D face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 35, No. 2, 381397, 2013.
[112]
Ming, Y. Rigid-area orthogonal spectral regression for efficient 3D face recognition. Neurocomputing Vol. 129, 445457, 2014.
[113]
Ratyal, N. I.; Ahmad Taj, I.; Bajwa, U. I.; Sajid, M. 3D face recognition based on pose and expression invariant alignment. Computers & Electrical Engineering Vol. 46, 241255, 2015.
[114]
Tang, Y. H.; Sun, X.; Huang, D.; Morvan, J. M.; Wang, Y. H.; Chen, L. M. 3D face recognition with asymptotic cones based principal curvatures. In: Proceedings of the International Conference on Biometrics, 466472, 2015.
[115]
Gilani, S. Z.; Mian, A.; Eastwood, P. Deep, dense and accurate 3D face correspondence for generating population specific deformable models. Pattern Recognition Vol. 69, 238250, 2017.
[116]
Peter, M.; Minoi, J. L.; Hipiny, I. H. M. 3D face recognition using kernel-based PCA approach. In: Computational Science and Technology. Lecture Notes in Electrical Engineering, Vol. 481. Alfred, R.; Lim, Y.; Ibrahim, A.; Anthony, P. Eds. Springer Singapore, 7786, 2019.
[117]
Passalis, G.; Perakis, P.; Theoharis, T.; Kakadiaris, I. A. Using facial symmetry to handle pose variations in real-world 3D face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 33, No. 10, 19381951, 2011.
[118]
Huang, D.; Ardabilian, M.; Wang, Y. H.; Chen, L. M. 3-D face recognition using eLBP-based facial description and local feature hybrid matching. IEEE Transactions on Information Forensics and Security Vol. 7, No. 5, 15511565, 2012.
[119]
Alyüz, N.; Gökberk, B.; Spreeuwers, L.; Veldhuis, R.; Akarun, L. Robust 3D face recognition in the presence of realistic occlusions. In: Proceedings of the 5th IAPR International Conference on Biometrics, 111118, 2012.
[120]
Fadaifard, H.; Wolberg, G.; Haralick, R. Multiscale 3D feature extraction and matching with an application to 3D face recognition. Graphical Models Vol. 75, No. 4, 157176, 2013.
[121]
Alyuz, N.; Gokberk, B.; Akarun, L. 3-D face recognition under occlusion using masked projection. IEEE Transactions on Information Forensics and Security Vol. 8, No. 5, 789802, 2013.
[122]
Bagchi, P.; Bhattacharjee, D.; Nasipuri, M. Robust 3D face recognition in presence of pose and partial occlusions or missing parts. arXiv preprint arXiv:1408.3709, 2014.
[123]
Bagchi, P.; Bhattacharjee, D.; Nasipuri, M. 3D Face Recognition using surface normals. In: Proceedings of the TENCON 2015 - 2015 IEEE Region 10 Conference, 16, 2015.
[124]
Liang, Y.; Zhang, Y.; Zeng, X. X. Pose-invariant 3D face recognition using half face. Signal Processing: Image Communication Vol. 57, 8490, 2017.
[125]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature Vol. 521, No. 7553, 436444, 2015.
[126]
Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. DeepFace: Closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 17011708, 2014.
[127]
Sun, Y.; Chen, Y. H.; Wang, X. G.; Tang, X. O. Deep learning face representation by joint identification-verification. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, Vol. 2, 19881996, 2014.
[128]
Sun, Y.; Wang, X. G.; Tang, X. O. Deep learning face representation from predicting 10,000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 18911898, 2014.
[129]
Sun, Y.; Wang, X. G.; Tang, X. O. Deeply learned face representations are sparse, selective, and robust. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 28922900, 2015.
[130]
Sun, Y.; Liang, D.; Wang, X. G.; Tang, X. O. DeepID3: Face recognition with very deep neural networks. arXiv preprint arXiv:1502.00873, 2015.
[131]
Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 815823, 2015.
[132]
Charles, R. Q.; Hao, S.; Mo, K. C.; Guibas, L. J. PointNet: Deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7785, 2017.
[133]
Qi, C. R.; Yi, L.; Su, H.; Guibas, L. J. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the 31st International Conference on Neural Information Processing System, 51055114, 2017.
[134]
Ding, Y. Q.; Li, N. Y.; Young, S. S.; Ye, J. W. Efficient 3D face recognition in uncontrolled environment. In: Advances in Visual Computing. Lecture Notes in Computer Science, Vol. 11844. Springer Cham, 430443, 2019.
[135]
Lin, S. S.; Liu, F.; Liu, Y. H.; Shen, L. L. Local feature tensor based deep learning for 3D face recognition. In: Proceedings of the 14th IEEE International Conference on Automatic Face & Gesture Recognition, 15, 2019.
[136]
Tan, Y.; Lin, H. X.; Xiao, Z. L.; Ding, S. Y.; Chao, H. Y. Face recognition from sequential sparse 3D data via deep registration. In: Proceedings of the International Conference on Biometrics, 18, 2019.
[137]
Olivetti, E. C.; Ferretti, J.; Cirrincione, G.; Nonis, F.; Tornincasa, S.; Marcolin, F. Deep CNN for 3D face recognition. In: Design Tools and Methods in Industrial Engineering. Lecture Notes in Mechanical Engineering. Rizzi, C.; Andrisano, A. O.; Leali, F.; Gherardini, F.; Pini, F.; Vergnano, A. Eds. Springer Cham, 665674, 2020.
[138]
Xu, K. M.; Wang, X. M.; Hu, Z. H.; Zhang, Z. H. 3D face recognition based on twin neural network combining deep map and texture. In: Proceedings of the IEEE 19th International Conference on Communication Technology, 16651668, 2019.
[139]
Feng, J. Y.; Guo, Q.; Guan, Y. D.; Wu, M. D.; Zhang, X. R.; Ti, C. L. 3D face recognition method based on deep convolutional neural network In: Smart Innovations in Communication and Computational Sciences. Advances in Intelligent Systems and Computing, Vol. 670. Panigrahi, B.; Trivedi, M.; Mishra, K.; Tiwari, S.; Singh, P. Eds. Springer Singapore, 123130, 2019.
[140]
Mu, G. D.; Huang, D.; Hu, G. S.; Sun, J.; Wang, Y. H. Led3D: A lightweight and efficient deep approach to recognizing low-quality 3D faces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 57665775, 2019.
[141]
Dutta, K.; Bhattacharjee, D.; Nasipuri, M. SpPCANet: A simple deep learning-based feature extraction approach for 3D face recognition. Multimedia Tools and Applications Vol. 79, Nos. 41–42, 3132931352, 2020.
[142]
Cao, C. Q.; Swash, M. R.; Meng, H. Y. Reliable holoscopic 3D face recognition. In: Proceedings ofthe 7th International Conference on Signal Processing and Integrated Networks, 696701, 2020.
[143]
Lin, S. S.; Jiang, C. Y.; Liu, F.; Shen, L. L. High quality facial data synthesis and fusion for 3D low-quality face recognition. In: Proceedings of the IEEE International Joint Conference on Biometrics, 18, 2021.
[144]
Chiu, M. T.; Cheng, H. Y.; Wang, C. Y.; Lai, S. H. High-accuracy RGB-D face recognition via segmentation-aware face depth estimation and mask-guided attention network. In: Proceedings of the 16th IEEE International Conference on Automatic Face and Gesture Recognition, 18, 2021.
[145]
Zhang, Z. Y.; Da, F. P.; Yu, Y. Learning directly from synthetic point clouds for “in-the-wild” 3D face recognition. Pattern Recognition Vol. 123, 108394, 2022.
[146]
Bhople, A. R.; Shrivastava, A. M.; Prakash, S. Point cloud based deep convolutional neural network for 3D face recognition. Multimedia Tools and Applications Vol. 80, No. 20, 3023730259, 2021.
[147]
Bhople, A. R.; Prakash, S. Learning similarity and dissimilarity in 3D faces with triplet network. Multimedia Tools and Applications Vol. 80, Nos. 28–29, 3597335991, 2021.
[148]
Jiang, C. Y.; Lin, S. S.; Chen, W.; Liu, F.; Shen, L. L. PointFace: Point set based feature learning for 3D face recognition. In: Proceedings of the IEEE International Joint Conference on Biometrics, 18, 2021.
[149]
Papadopoulos, K.; Kacem, A.; Shabayek, A.; Aouada, D. Face-GCN: A graph convolutional network for 3D dynamic face identification/recognition. arXiv preprint arXiv:2104.09145, 2021.
[150]
Li, B. Y. L.; Mian, A. S.; Liu, W. Q.; Krishna, A. Using Kinect for face recognition under varying poses, expressions, illumination and disguise. In: Proceedings of the IEEE Workshop on Applications of Computer Vision, 186192, 2013.
[151]
Wang, F.; Cheng, J.; Liu, W. Y.; Liu, H. J. Additive margin softmax for face verification. IEEE Signal Processing Letters Vol. 25, No. 7, 926930, 2018.
[152]
Cortes, C.; Vapnik, V. Support-vector networks. Machine Learning Vol. 20, No. 3, 273297, 1995.
[153]
Isola, P.; Zhu, J. Y.; Zhou, T. H.; Efros, A. A. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 59675976, 2017.
[154]
Jiang, L.; Zhang, J. Y.; Deng, B. L. Robust RGB-D face recognition using attribute-aware loss. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 42, No. 10, 25522566, 2020.
[155]
Paysan, P.; Knothe, R.; Amberg, B.; Romdhani, S.; Vetter, T. A 3D face model for pose and illumination invariant face recognition. In: Proceedings of the 6th IEEE International Conference on Advanced Video and Signal Based Surveillance, 296301, 2009.
[156]
Cao, C.; Weng, Y. L.; Zhou, S.; Tong, Y. Y.; Zhou, K. FaceWarehouse: A 3D facial expression database for visual computing. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 3, 413425, 2014.
[157]
Castellani, U.; Bartoli, A. 3D shape registration. In: 3D Imaging, Analysis and Applications. Liu, Y.; Pears, N.; Rosin, P. L.; Huber, P. Eds. Springer Cham, 353411, 2020.
[158]
D’Errico, J. Surface fitting using gridfit. MATLAB Central File Exchange. 2005. Available at https://www.mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit.
[159]
Ciravegna, G.; Cirrincione, G.; Marcolin, F.; Barbiero, P.; Dagnes, N.; Piccolo, E. Assessing discriminating capability of geometrical descriptors for 3D face recognition by using the GH-EXIN neural network. In: Neural Approaches to Dynamics of Signal Exchanges. Smart Innovation, Systems and Technologies, Vol. 151. Esposito, A.; Faundez-Zanuy, M.; Morabito, F.; Pasero, E. Eds. Springer Singapore, 223233, 2020.
[160]
Lüthi, M.; Gerig, T.; Jud, C.; Vetter, T. Gaussian process morphable models. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 40, No. 8, 18601873, 2017.
[161]
Gilani, S. Z.; Mian, A.; Shafait, F.; Reid, I. Dense 3D face correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 40, No. 7, 15841598, 2018.
[162]
El Rahman Shabayek, A.; Aouada, D.; Cherenkova, K.; Gusev, G.; Ottersten, B. 3D deformation signature for dynamic face recognition. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 21382142, 2020.
[163]
Smith, M.; Smith, L.; Huang, N.; Hansen, M.; Smith, M. Deep 3D face recognition using 3D data augmentation and transfer learning. In: Proceedings of the 16th International Conference on Machine Learning and Data Mining, 209218, 2020.
[164]
Dou, P. F.; Shah, S. K.; Kakadiaris, I. A. End-to-end 3D face reconstruction with deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 15031512, 2017.
[165]
Richardson, E.; Sela, M. T.; Kimmel, R. 3D face reconstruction by learning from synthetic data. In: Proceedings of the 4th International Conference on 3D Vision, 460469, 2016.
Computational Visual Media
Pages 657-685
Cite this article:
Jing Y, Lu X, Gao S. 3D face recognition: A comprehensive survey in 2022. Computational Visual Media, 2023, 9(4): 657-685. https://doi.org/10.1007/s41095-022-0317-1
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return