Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Deep learning has been successfully used for tasks in the 2D image domain. Research on 3D computer vision and deep geometry learning has also attracted attention. Considerable achievements have been made regarding feature extraction and discrimination of 3D shapes. Following recent advances in deep generative models such as generative adversarial networks, effective generation of 3D shapes has become an active research topic. Unlike 2D images with a regular grid structure, 3D shapes have various representations, such as voxels, point clouds, meshes, and implicit functions. For deep learning of 3D shapes, shape representation has to be taken into account as there is no unified representation that can cover all tasks well. Factors such as the representativeness of geometry and topology often largely affect the quality of the generated 3D shapes. In this survey, we comprehensively review works on deep-learning-based 3D shape generation by classifying and discussing them in terms of the underlying shape representation and the architecture of the shape generator. The advantages and disadvantages of each class are further analyzed. We also consider the 3D shape datasets commonly used for shape generation. Finally, we present several potential research directions that hopefully can inspire future works on this topic.
2406
Views
419
Downloads
8
Crossref
6
Web of Science
6
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.