PDF (2.5 MB)
Collect
Submit Manuscript
Short Communication | Open Access

JNeRF: An efficient heterogeneous NeRF model zoo based on Jittor

Department of Computer Science and Technology, TsinghuaUniversity, Beijing 100084, China
Fitten Tech Co., Ltd., Beijing 100084, China
Show Author Information

Graphical Abstract

View original image Download original image

References

[1]
Hu, S. M.; Liang, D.; Yang, G. Y.; Yang, G. W.; Zhou, W. Y. Jittor: A novel deep learning framework with meta-operators and unified graph execution. Science China Information Sciences Vol. 63, No. 12, Article No. 222103, 2020.
[2]
Müller, T.; Evans, A.; Schied, C.; Keller, A. Instant neural graphics primitives with a multiresolution hash encoding. arXiv preprint arXiv:2201.05989, 2022.
[3]
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An imperative style, high-performance deep learning library. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, Article No. 721, 80268037, 2019.
[4]
Mildenhall, B.; Srinivasan, P. P.; Tancik, M.; Barron, J. T.; Ramamoorthi, R.; Ng, R. NeRF. Communications of the ACM Vol. 65, No. 1, 99106, 2022.
Computational Visual Media
Pages 401-404
Cite this article:
Yang G-W, Liu Z-N, Li D-Y, et al. JNeRF: An efficient heterogeneous NeRF model zoo based on Jittor. Computational Visual Media, 2023, 9(2): 401-404. https://doi.org/10.1007/s41095-022-0327-z
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return