Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Significant progress has been made in image inpainting methods in recent years. However, they are incapable of producing inpainting results with reasonable structures, rich detail, and sharpness at the same time. In this paper, we propose the Pyramid-VAE-GAN network for image inpainting to address this limitation. Our network is built on a variational autoencoder (VAE) backbone that encodes high-level latent variables to represent complicated high-dimensional prior distributions of images. The prior assists in reconstructing reasonable structures when inpainting. We also adopt a pyramid structure in our model to maintain rich detail in low-level latent variables. To avoid the usual incompatibility of requiring both reasonable structures and rich detail, we propose a novel cross-layer latent variable transfer module. This transfers information about long-range structures contained in high-level latent variables to low-level latent variables representing more detailed information. We further use adversarial training to select the most reasonable results and to improve the sharpness of the images. Extensive experimental results on multiple datasets demonstrate the superiority of our method. Our code is available at https://github.com/thy960112/Pyramid-VAE-GAN.
584
Views
17
Downloads
3
Crossref
4
Web of Science
4
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.