Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Template matching is a fundamental task in computer vision and has been studied for decades. It plays an essential role in manufacturing industry for estimating the poses of different parts, facilitating downstream tasks such as robotic grasping. Existing methods fail when the template and source images have different modalities, cluttered backgrounds, or weak textures. They also rarely consider geometric transformations via homographies, which commonly exist even for planar industrial parts. To tackle the challenges, we propose an accurate template matching method based on differentiable coarse-to-fine correspondence refinement. We use an edge-aware module to overcome the domain gap between the mask template and the grayscale image, allowing robust matching. An initial warp is estimated using coarse correspondences based on novel structure-aware information provided by transformers. This initial alignment is passed to a refinement network using references and aligned images to obtain sub-pixel level correspondences which are used to give the final geometric transformation. Extensive evaluation shows that our method to be significantly better than state-of-the-art methods and baselines, providing good generalization ability and visually plausible results even on unseen real data.
500
Views
26
Downloads
3
Crossref
2
Web of Science
3
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.