Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Video colorization is a challenging and highly ill-posed problem. Although recent years have witnessed remarkable progress in single image colorization, there is relatively less research effort on video colorization, and existing methods always suffer from severe flickering artifacts (temporal incon-sistency) or unsatisfactory colorization. We address this problem from a new perspective, by jointly considering colorization and temporal consistency in a unified framework. Specifically, we propose a novel temporally consistent video colorization (TCVC) framework. TCVC effectively propagates frame-level deep features in a bidirectional way to enhance the temporal consistency of colorization. Furthermore, TCVC introduces a self-regularization learning (SRL) scheme to minimize the differences in predictions obtained using different time steps. SRL does not require any ground-truth color videos for training and can further improve temporal consistency. Experiments demonstrate that our method can not only provide visually pleasing colorized video, but also with clearly better temporal consistency than state-of-the-art methods. A video demo is provided at https://www.youtube.com/watch?v=c7dczMs-olE, while code is available at https://github.com/lyh-18/TCVC-Temporally-Consistent-Video-Colorization.
476
Views
29
Downloads
13
Crossref
6
Web of Science
10
Scopus
1
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.