Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Visual object tracking has been drawing increasing attention in recent years, as a fundamental task in computer vision. To extend the range of tracking applications, researchers have been introducing information from multiple modalities to handle specific scenes, with promising research prospects for emerging methods and benchmarks. To provide a thorough review of multi-modal tracking, different aspects of multi-modal tracking algorithms are summarized under a unified taxonomy, with specific focus on visible-depth (RGB-D) and visible-thermal (RGB-T) tracking. Subsequently, a detailed description of the related benchmarks and challenges is provided. Extensive experiments were conducted to analyze the effectiveness of trackers on five datasets: PTB, VOT19-RGBD, GTOT, RGBT234, and VOT19-RGBT. Finally, various future directions, including model design and dataset construction, are discussed from different perspectives for further research.
668
Views
63
Downloads
12
Crossref
7
Web of Science
10
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.