AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Adaptive sampling and reconstruction for gradient-domain rendering

State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058, China
College of Transport and Communications, Shanghai Maritime University, Shanghai 201306, China
Show Author Information

Graphical Abstract

Abstract

Gradient-domain rendering estimates finite difference gradients of image intensities and reconstructs the final result by solving a screened Poisson problem, which shows improvements over merely sampling pixel intensities. Adaptive sampling is another orthogonal research area that focuses on distributing samples adaptively in the primal domain. However, adaptive sampling in the gradient domain with low sampling budget has been less explored. Our idea is based on the observation that signals in the gradient domain are sparse, which provides more flexibility for adaptive sampling. We propose a deep-learning-based end-to-end sampling and reconstruction framework in gradient-domain rendering, enabling adaptive sampling gradient and the primal maps simultaneously. We conducted extensive experiments for evaluation and showed that our method produces better reconstruction quality than other methods in the test dataset.

Electronic Supplementary Material

Download File(s)
cvm-10-5-885_ESM.zip (159.6 MB)

References

[1]

Kajiya, J. T. The rendering equation. ACM SIGGRAPH Computer Graphics Vol. 20, No. 4, 143–150, 1986.

[2]

Zwicker, M.; Jarosz, W.; Lehtinen, J.; Moon, B.; Ramamoorthi, R.; Rousselle, F.; Sen, P.; Soler, C.; Yoon, S. E. Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Computer Graphics Forum Vol. 34, No. 2, 667–681, 2015.

[3]

Kuznetsov, A.; Kalantari, N. K.; Ramamoorthi, R. Deep adaptive sampling for low sample count rendering. Computer Graphics Forum Vol. 37, No. 4, 35–44, 2018.

[4]

Hua, B. S.; Gruson, A.; Petitjean, V.; Zwicker, M.; Nowrouzezahrai, D.; Eisemann, E.; Hachisuka, T. A survey on gradient-domain rendering. Computer Graphics Forum Vol. 38, No. 2, 455–472, 2019.

[5]

Lehtinen, J.; Karras, T.; Laine, S.; Aittala, M.; Durand, F.; Aila, T. Gradient-domain metropolis light transport. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 95, 2013.

[6]

Kettunen, M.; Manzi, M.; Aittala, M.; Lehtinen, J.; Durand, F.; Zwicker, M. Gradient-domain path tracing. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 123, 2015.

[7]

Hua, B. S.; Gruson, A.; Nowrouzezahrai, D.; Hachisuka, T. Gradient-domain photon density estimation. Computer Graphics Forum Vol. 36, No. 2, 31–38, 2017.

[8]
Manzi, M.; Kettunen, M.; Aittala, M.; Lehtinen, J.; Durand, F.; Zwicker, M. Gradient-domain bidirectional path tracing. In: Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations, 65–74, 2015.
[9]
Sun, W.; Sun, X.; Carr, N.; Nowrouzezahrai, D.; Ramamoorthi, R. Gradient-domain vertex connection and merging. In: Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations, 83–92, 2017.
[10]

Manzi, M.; Kettunen, M.; Durand, F.; Zwicker, M.; Lehtinen, J. Temporal gradient-domain path tracing. ACM Transactions on Graphics Vol. 35, No. 6, Article No. 246, 2016.

[11]

Huo, Y.; Yoon, S. E. A survey on deep learning-based Monte Carlo denoising. Computational Visual Media Vol. 7, No. 2, 169–185, 2021.

[12]

Kettunen, M.; Härkönen, E.; Lehtinen, J. Deep convolutional reconstruction for gradient-domain rendering. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 126, 2019.

[13]

Guo, J.; Li, M.; Li, Q.; Qiang, Y.; Hu, B.; Guo, Y.; Yan, L. Q. GradNet: Unsupervised deep screened Poisson reconstruction for gradient-domain rendering. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 223, 2019.

[14]

Hasselgren, J.; Munkberg, J.; Salvi, M.; Patney, A.; Lefohn, A. Neural temporal adaptive sampling and denoising. Computer Graphics Forum Vol. 39, No. 2, 147–155, 2020.

[15]
Veach, E. Robust Monte Carlo methods for light transport simulation. Ph.D. Dissertation. Stanford University, 1997.
[16]

Hachisuka, T.; Jensen, H. W. Stochastic progressive photon mapping. ACM Transactions on Graphics Vol. 28, No. 5, Article No. 141, 2009.

[17]
Georgiev, I. Implementing vertex connection and merging. Technical Report. Saarland University, 2012. Available at https://iliyan.com/publications/ImplementingVCM/ImplementingVCM_TechRep2012_rev2.pdf
[18]

Bauszat, P.; Petitjean, V.; Eisemann, E. Gradient-domain path reusing. ACM Transactions on Graphics Vol. 36, No. 6, Article No. 229, 2017.

[19]

Gruson, A.; Hua, B. S.; Vibert, N.; Nowrouzezahrai, D.; Hachisuka, T. Gradient-domain volumetric photon density estimation. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 82, 2018.

[20]

Jarosz, W.; Zwicker, M.; Jensen, H. W. The beam radiance estimate for volumetric photon mapping. Computer Graphics Forum Vol. 27, No. 2, 557–566, 2008.

[21]

Jarosz, W.; Nowrouzezahrai, D.; Thomas, R.; Sloan, P. P.; Zwicker, M. Progressive photon beams. ACM Transactions on Graphics Vol. 30, No. 5, 1–12, 2011.

[22]

Bitterli, B.; Jarosz, W. Beyond points and beams: Higher-dimensional photon samples for volumetric light transport. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 112, 2017.

[23]

Petitjean, V.; Bauszat, P.; Eisemann, E. Spectral gradient sampling for path tracing. Computer Graphics Forum Vol. 37, No. 4, 45–53, 2018.

[24]

Back, J.; Yoon, S. E.; Moon, B. Feature generation for adaptive gradient-domain path tracing. Computer Graphics Forum Vol. 37, No. 7, 65–74, 2018.

[25]

Moon, B.; McDonagh, S.; Mitchell, K.; Gross, M. Adaptive polynomial rendering. ACM Transactions on Graphic Vol. 35, No. 4, Article No. 40, 2016.

[26]

Chaitanya, C. R. A.; Kaplanyan, A. S.; Schied, C.; Salvi, M.; Lefohn, A.; Nowrouzezahrai, D.; Aila, T. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 98, 2017.

[27]

Bako, S.; Vogels, T.; McWilliams, B.; Meyer, M.; NováK, J.; Harvill, A.; Sen, P.; Derose, T.; Rousselle, F. Kernel-predicting convolutional networks for denoising Monte Carlo renderings. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 97, 2017.

[28]

Vogels, T.; Rousselle, F.; McWilliams, B.; Röthlin, G.; Harvill, A.; Adler, D.; Meyer, M.; Novák, J. Denoising with kernel prediction and asymmetric loss functions. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 124, 2018.

[29]

Xu, B.; Zhang, J.; Wang, R.; Xu, K.; Yang, Y. L.; Li, C.; Tang, R. Adversarial Monte Carlo denoising with conditioned auxiliary feature modulation. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 224, 2019.

[30]
Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.; Haloui, I.; Gupta, J. S.; et al. Generative adversarial networks. arXiv preprint arXiv:1406.2661, 2014.
[31]

Lin, W.; Wang, B.; Wang, L.; Holzschuch, N. A detail preserving neural network model for Monte Carlo denoising. Computational Visual Media Vol. 6, No. 2, 157–168, 2020.

[32]

Lin, W.; Wang, B.; Yang, J.; Wang, L.; Yan, L. Q. Path-based Monte Carlo denoising using a three-scale neural network. Computer Graphics Forum Vol. 40, No. 1, 369–381, 2021.

[33]

Kettunen, M.; Härkönen, E.; Lehtinen, J. Deep convolutional reconstruction for gradient-domain rendering. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 126, 2019.

[34]
Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K. Q. Densely connected convolutional networks. arXiv preprint arXiv:1608.06993, 2016.
[35]

Xu, Z.; Sun, Q.; Wang, L.; Xu, Y.; Wang, B. Unsupervised image reconstruction for gradient-domain volumetric rendering. Computer Graphics Forum Vol. 39, No. 7, 193–203, 2020.

[36]
Clevert, D. A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289, 2015.
[37]
Kettunen, M.; Härkönen, E.; Lehtinen, J. E-LPIPS: Robust perceptual image similarity via random transformation ensembles. arXiv preprint arXiv:1906. 03973, 2019.
[38]
Zhang, R.; Isola, P.; Efros, A. A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 586–595, 2018.
[39]

Reinhard, E.; Stark, M.; Shirley, P.; Ferwerda, J. Photographic tone reproduction for digital images. ACM Transactions on Graphics Vol. 21, No. 3, 267–276, 2002.

[40]
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.
[41]
Bitterli, B. Rendering resources. 2016. Available at https://benedikt-bitterli.me/resources/
[42]

Manzi, M.; Rousselle, F.; Kettunen, M.; Lehtinen, J.; Zwicker, M. Improved sampling for gradient-domain metropolis light transport. ACM Transactions on Graphics Vol. 33, No. 6, Article No. 178, 2014.

[43]

Chaitanya, C. R. A.; Kaplanyan, A. S.; Schied, C.; Salvi, M.; Lefohn, A.; Nowrouzezahrai, D.; Aila, T. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 98, 2017.

[44]
Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K. Q. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2261–2269, 2017.
Computational Visual Media
Pages 885-902
Cite this article:
Liang Y, Liu T, Huo Y, et al. Adaptive sampling and reconstruction for gradient-domain rendering. Computational Visual Media, 2024, 10(5): 885-902. https://doi.org/10.1007/s41095-023-0361-5

172

Views

13

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 24 January 2023
Accepted: 08 June 2023
Published: 10 October 2024
© The Author(s) 2024.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.

Return