Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Gradient-domain rendering estimates finite difference gradients of image intensities and reconstructs the final result by solving a screened Poisson problem, which shows improvements over merely sampling pixel intensities. Adaptive sampling is another orthogonal research area that focuses on distributing samples adaptively in the primal domain. However, adaptive sampling in the gradient domain with low sampling budget has been less explored. Our idea is based on the observation that signals in the gradient domain are sparse, which provides more flexibility for adaptive sampling. We propose a deep-learning-based end-to-end sampling and reconstruction framework in gradient-domain rendering, enabling adaptive sampling gradient and the primal maps simultaneously. We conducted extensive experiments for evaluation and showed that our method produces better reconstruction quality than other methods in the test dataset.
Kajiya, J. T. The rendering equation. ACM SIGGRAPH Computer Graphics Vol. 20, No. 4, 143–150, 1986.
Zwicker, M.; Jarosz, W.; Lehtinen, J.; Moon, B.; Ramamoorthi, R.; Rousselle, F.; Sen, P.; Soler, C.; Yoon, S. E. Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Computer Graphics Forum Vol. 34, No. 2, 667–681, 2015.
Kuznetsov, A.; Kalantari, N. K.; Ramamoorthi, R. Deep adaptive sampling for low sample count rendering. Computer Graphics Forum Vol. 37, No. 4, 35–44, 2018.
Hua, B. S.; Gruson, A.; Petitjean, V.; Zwicker, M.; Nowrouzezahrai, D.; Eisemann, E.; Hachisuka, T. A survey on gradient-domain rendering. Computer Graphics Forum Vol. 38, No. 2, 455–472, 2019.
Lehtinen, J.; Karras, T.; Laine, S.; Aittala, M.; Durand, F.; Aila, T. Gradient-domain metropolis light transport. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 95, 2013.
Kettunen, M.; Manzi, M.; Aittala, M.; Lehtinen, J.; Durand, F.; Zwicker, M. Gradient-domain path tracing. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 123, 2015.
Hua, B. S.; Gruson, A.; Nowrouzezahrai, D.; Hachisuka, T. Gradient-domain photon density estimation. Computer Graphics Forum Vol. 36, No. 2, 31–38, 2017.
Manzi, M.; Kettunen, M.; Durand, F.; Zwicker, M.; Lehtinen, J. Temporal gradient-domain path tracing. ACM Transactions on Graphics Vol. 35, No. 6, Article No. 246, 2016.
Huo, Y.; Yoon, S. E. A survey on deep learning-based Monte Carlo denoising. Computational Visual Media Vol. 7, No. 2, 169–185, 2021.
Kettunen, M.; Härkönen, E.; Lehtinen, J. Deep convolutional reconstruction for gradient-domain rendering. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 126, 2019.
Guo, J.; Li, M.; Li, Q.; Qiang, Y.; Hu, B.; Guo, Y.; Yan, L. Q. GradNet: Unsupervised deep screened Poisson reconstruction for gradient-domain rendering. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 223, 2019.
Hasselgren, J.; Munkberg, J.; Salvi, M.; Patney, A.; Lefohn, A. Neural temporal adaptive sampling and denoising. Computer Graphics Forum Vol. 39, No. 2, 147–155, 2020.
Hachisuka, T.; Jensen, H. W. Stochastic progressive photon mapping. ACM Transactions on Graphics Vol. 28, No. 5, Article No. 141, 2009.
Bauszat, P.; Petitjean, V.; Eisemann, E. Gradient-domain path reusing. ACM Transactions on Graphics Vol. 36, No. 6, Article No. 229, 2017.
Gruson, A.; Hua, B. S.; Vibert, N.; Nowrouzezahrai, D.; Hachisuka, T. Gradient-domain volumetric photon density estimation. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 82, 2018.
Jarosz, W.; Zwicker, M.; Jensen, H. W. The beam radiance estimate for volumetric photon mapping. Computer Graphics Forum Vol. 27, No. 2, 557–566, 2008.
Jarosz, W.; Nowrouzezahrai, D.; Thomas, R.; Sloan, P. P.; Zwicker, M. Progressive photon beams. ACM Transactions on Graphics Vol. 30, No. 5, 1–12, 2011.
Bitterli, B.; Jarosz, W. Beyond points and beams: Higher-dimensional photon samples for volumetric light transport. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 112, 2017.
Petitjean, V.; Bauszat, P.; Eisemann, E. Spectral gradient sampling for path tracing. Computer Graphics Forum Vol. 37, No. 4, 45–53, 2018.
Back, J.; Yoon, S. E.; Moon, B. Feature generation for adaptive gradient-domain path tracing. Computer Graphics Forum Vol. 37, No. 7, 65–74, 2018.
Moon, B.; McDonagh, S.; Mitchell, K.; Gross, M. Adaptive polynomial rendering. ACM Transactions on Graphic Vol. 35, No. 4, Article No. 40, 2016.
Chaitanya, C. R. A.; Kaplanyan, A. S.; Schied, C.; Salvi, M.; Lefohn, A.; Nowrouzezahrai, D.; Aila, T. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 98, 2017.
Bako, S.; Vogels, T.; McWilliams, B.; Meyer, M.; NováK, J.; Harvill, A.; Sen, P.; Derose, T.; Rousselle, F. Kernel-predicting convolutional networks for denoising Monte Carlo renderings. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 97, 2017.
Vogels, T.; Rousselle, F.; McWilliams, B.; Röthlin, G.; Harvill, A.; Adler, D.; Meyer, M.; Novák, J. Denoising with kernel prediction and asymmetric loss functions. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 124, 2018.
Xu, B.; Zhang, J.; Wang, R.; Xu, K.; Yang, Y. L.; Li, C.; Tang, R. Adversarial Monte Carlo denoising with conditioned auxiliary feature modulation. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 224, 2019.
Lin, W.; Wang, B.; Wang, L.; Holzschuch, N. A detail preserving neural network model for Monte Carlo denoising. Computational Visual Media Vol. 6, No. 2, 157–168, 2020.
Lin, W.; Wang, B.; Yang, J.; Wang, L.; Yan, L. Q. Path-based Monte Carlo denoising using a three-scale neural network. Computer Graphics Forum Vol. 40, No. 1, 369–381, 2021.
Kettunen, M.; Härkönen, E.; Lehtinen, J. Deep convolutional reconstruction for gradient-domain rendering. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 126, 2019.
Xu, Z.; Sun, Q.; Wang, L.; Xu, Y.; Wang, B. Unsupervised image reconstruction for gradient-domain volumetric rendering. Computer Graphics Forum Vol. 39, No. 7, 193–203, 2020.
Reinhard, E.; Stark, M.; Shirley, P.; Ferwerda, J. Photographic tone reproduction for digital images. ACM Transactions on Graphics Vol. 21, No. 3, 267–276, 2002.
Manzi, M.; Rousselle, F.; Kettunen, M.; Lehtinen, J.; Zwicker, M. Improved sampling for gradient-domain metropolis light transport. ACM Transactions on Graphics Vol. 33, No. 6, Article No. 178, 2014.
Chaitanya, C. R. A.; Kaplanyan, A. S.; Schied, C.; Salvi, M.; Lefohn, A.; Nowrouzezahrai, D.; Aila, T. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 98, 2017.
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.