Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
While originally designed for natural language processing tasks, the self-attention mechanism has recently taken various computer vision areas by storm. However, the 2D nature of images brings three challenges for applying self-attention in computer vision: (1) treating images as 1D sequences neglects their 2D structures; (2) the quadratic complexity is too expensive for high-resolution images; (3) it only captures spatial adaptability but ignores channel adaptability. In this paper, we propose a novel linear attention named large kernel attention (LKA) to enable self-adaptive and long-range correlations in self-attention while avoiding its shortcomings. Furthermore, we present a neural network based on LKA, namely Visual Attention Network (VAN). While extremely simple, VAN achieves comparable results with similar size convolutional neuralnetworks (CNNs) and vision transformers (ViTs) in various tasks, including image classification, object detection, semantic segmentation, panoptic segmentation,pose estimation, etc. For example, VAN-B6 achieves 87.8% accuracy on ImageNet benchmark, and sets new state-of-the-art performance (58.2% PQ) for panoptic segmentation. Besides, VAN-B2 surpasses Swin-T 4% mIoU (50.1% vs. 46.1%) for semantic segmentation on ADE20K benchmark, 2.6% AP (48.8% vs. 46.2%) for object detection on COCO dataset. It provides a novel method and a simple yet strong baseline for the community. The code is available at https://github.com/Visual-Attention-Network.
949
Views
57
Downloads
321
Crossref
215
Web of Science
288
Scopus
6
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduc-tion in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.