Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Physics-based fluid simulation has played an increasingly important role in the computer graphics community. Recent methods in this area have greatly improved the generation of complex visual effects and its computational efficiency. Novel techniques have emerged to deal with complex boundaries, multiphase fluids, gas–liquid interfaces, and fine details. The parallel use of machine learning, image processing, and fluid control technologies has brought many interesting and novel research perspectives. In this survey, we provide an introduction to theoretical concepts underpinning physics-based fluid simulation and their practical implementation, with the aim for it to serve as a guide for both newcomers and seasoned researchers to explore the field of physics-based fluid simulation, with a focus on developments in the last decade. Driven by the distribution of recent publications in the field, we structure our survey to cover physical background; discretization approaches; computational methods that address scalability; fluid interactions with other materials and interfaces; and methods for expressive aspects of surface detail and control. From a practical perspective, we give an overview of existing implementations available for the above methods.
Reeves, W. T.; Blau, R. Approximate and probabilistic algorithms for shading and rendering structured particle systems. ACM SIGGRAPH Computer Graphics Vol. 19, No. 3, 313–322, 1985.
Bridson, R. Fluid Simulation for Computer Graphics. CRC Press, 2008.
Sito, T. Moving Innovation: A History of Computer Animation. The MIT Press, 2015.
Foster, N.; Metaxas, D. Realistic animation of liquids. Graphical Models and Image Processing Vol. 58, No. 5, 471–483, 1996.
Brackbill, J. U.; Ruppel, H. M. FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. Journal of Computational Physics Vol. 65, No. 2, 314–343, 1986.
Zhu, Y. N.; Bridson, R. Animating sand as a fluid. ACM Transactions on Graphics Vol. 24, No. 3, 965–972, 2005.
Harlow, F. H.; Welch, J. E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. The Physics of Fluids Vol. 8, No. 12, 2182–2189, 1965.
Lucy, L. B. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal Vol. 82, 1013–1024, 1977.
Gingold, R. A.; Monaghan, J. J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society Vol. 181, No. 3, 375–389, 1977.
Solenthaler, B.; Pajarola, R. Predictive-corrective incompressible SPH. ACM Transactions on Graphics Vol. 28, No. 3, Article No. 40, 2009.
Ihmsen, M.; Cornelis, J.; Solenthaler, B.; Horvath, C.; Teschner, M. Implicit incompressible SPH. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 3, 426–435, 2014.
Bender, J.; Koschier, D. Divergence-free SPH for incompressible and viscous fluids. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 3, 1193–1206, 2017.
Müller, M.; Heidelberger, B.; Hennix, M.; Ratcliff, J. Position based dynamics. Journal of Visual Communication and Image Representation Vol. 18, No. 2, 109–118, 2007.
Macklin, M.; Müller, M. Position based fluids. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 104, 2013.
Harlow, F. H. The particle-in-cell computing method for fluid dynamics. Methods in Computational Physics Vol. 3, 319–343, 1964.
Sulsky, D.; Zhou, S. J.; Schreyer, H. L. Application of a particle-in-cell method to solid mechanics. Computer Physics Communications Vol. 87, Nos. 1–2, 236–252, 1995.
Jiang, C.; Schroeder, C.; Selle, A.; Teran, J.; Stomakhin, A. The affine particle-in-cell method. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 51, 2015.
Fu, C. Y.; Guo, Q.; Gast, T.; Jiang, C.; Teran, J. A polynomial particle-in-cell method. ACM Transactions on Graphics Vol. 36, No. 6, Article No. 222, 2017.
Hu, Y. M.; Fang, Y.; Ge, Z. H.; Qu, Z. Y.; Zhu, Y. X.; Pradhana, A.; Jiang, C. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 150, 2018.
Manteaux, P. L.; Wojtan, C.; Narain, R.; Redon, S.; Faure, F.; Cani, M. P. Adaptive physically based models in computer graphics. Computer Graphics Forum Vol. 36, No. 6, 312–337, 2017.
Koike, T.; Morishima, S.; Ando, R. Asynchronous Eulerian liquid simulation. Computer Graphics Forum Vol. 39, No. 2, 1–8, 2020.
Courant, R.; Friedrichs, K.; Lewy, H. Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen Vol. 100, No. 1, 32–74, 1928.
Sun, Y. X.; Shinar, T.; Schroeder, C. Effective time step restrictions for explicit MPM simulation. Computer Graphics Forum Vol. 39, No. 8, 55–67, 2020.
Fang, Y.; Hu, Y. M.; Hu, S. M.; Jiang, C. A temporally adaptive material point method with regional time stepping. Computer Graphics Forum Vol. 37, No. 8, 195–204, 2018.
Losasso, F.; Gibou, F.; Fedkiw, R. Simulating water and smoke with an octree data structure. ACM Transactions on Graphics Vol. 23, No. 3, 457–462, 2004.
Setaluri, R.; Aanjaneya, M.; Bauer, S.; Sifakis, E. SPGrid: A sparse paged grid structure applied to adaptive smoke simulation. ACM Transactions on Graphics Vol. 33, No. 6, Article No. 205, 2014.
Goldade, R.; Wang, Y. P.; Aanjaneya, M.; Batty, C. An adaptive variational finite difference framework for efficient symmetric octree viscosity. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 94, 2019.
Ando, R.; Batty, C. A practical octree liquid simulator with adaptive surface resolution. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 32, 2020.
Shao, H.; Huang, L. B.; Michels, D. L. A fast unsmoothed aggregation algebraic multigrid framework for the large-scale simulation of incompressible flow. ACM Transactions on Graphics Vol. 41, No. 4, Article No. 49, 2022.
Ferstl, F.; Westermann, R.; Dick, C. Large-scale liquid simulation on adaptive hexahedral grids. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 10, 1405–1417, 2014.
Aanjaneya, M.; Gao, M.; Liu, H. X.; Batty, C.; Sifakis, E. Power diagrams and sparse paged grids for high resolution adaptive liquids. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 140, 2017.
Xiao, Y. W.; Chan, S.; Wang, S. Q.; Zhu, B.; Yang, X. B. An adaptive staggered-tilted grid for incompressible flow simulation. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 171, 2020.
Gao, Y.; Li, C. F.; Ren, B.; Hu, S. M. View-dependent multiscale fluid simulation. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 2, 178–188, 2013.
Li, W.; Bai, K.; Liu, X. P. Continuous-scale kinetic fluid simulation. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 9, 2694–2709, 2019.
Zhu, B.; Lu, W. L.; Cong, M.; Kim, B.; Fedkiw, R. A new grid structure for domain extension. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 63, 2013.
Ibayashi, H.; Wojtan, C.; Thuerey, N.; Igarashi, T.; Ando, R. Simulating liquids on dynamically warping grids. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 6, 2288–2302, 2020.
Adams, B.; Pauly, M.; Keiser, R.; Guibas, L. J. Adaptively sampled particle fluids. ACM Transactions on Graphics Vol. 26, No. 3, Article No. 48, 2007.
Orthmann, J.; Kolb, A. Temporal blending for adaptive SPH. Computer Graphics Forum Vol. 31, No. 8, 2436–2449, 2012.
Winchenbach, R.; Hochstetter, H.; Kolb, A. Infinite continuous adaptivity for incompressible SPH. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 102, 2017.
Zhai, X.; Hou, F.; Qin, H.; Hao, A. M. Fluid simulation with adaptive staggered power particles on GPUs. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 6, 2234–2246, 2020.
Winchenbach, R.; Akhunov, R.; Kolb, A. Semi-analytic boundary handling below particle resolution for smoothed particle hydrodynamics. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 173, 2020.
Winchenbach, R.; Kolb, A. Optimized refinement for spatially adaptive SPH. ACM Transactions on Graphics Vol. 40, No. 1, Article No. 8, 2021.
Winchenbach, R.; Kolb, A. Multi-level memory structures for simulating and rendering smoothed particle hydrodynamics. Computer Graphics Forum Vol. 39, No. 6, 527–541, 2020.
Greengard, L.; Rokhlin, V. A fast algorithm for particle simulations. Journal of Computational Physics Vol. 135, No. 2, 280–292, 1997.
Zhang, X. X.; Bridson, R. A PPPM fast summation method for fluids and beyond. ACM Transactions on Graphics Vol. 33, No. 6, Article No. 206, 2014.
Angelidis, A. Multi-scale vorticle fluids. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 104, 2017.
Nakanishi, R.; Nascimento, F.; Campos, R.; Pagliosa, P.; Paiva, A. RBF liquids: An adaptive PIC solver using RBF-FD. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 170, 2020.
Wu, K.; Truong, N.; Yuksel, C.; Hoetzlein, R. Fast fluid simulations with sparse volumes on the GPU. Computer Graphics Forum Vol. 37, No. 2, 157–167, 2018.
Chen, Y. X.; Li, W.; Fan, R.; Liu, X. P. GPU optimization for high-quality kinetic fluid simulation. IEEE Transactions on Visualization and Computer Graphics Vol. 28, No. 9, 3235–3251, 2022.
Ando, R.; Thurey, N.; Tsuruno, R. Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Transactions on Visualization and Computer Graphics Vol. 18, No. 8, 1202–1214, 2012.
Ando, R.; Thürey, N.; Wojtan, C. Highly adaptive liquid simulations on tetrahedral meshes. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 103, 2013.
Yue, Y. H.; Smith, B.; Chen, P. Y.; Chantharayukhonthorn, M.; Kamrin, K.; Grinspun, E. Hybrid grains: Adaptive coupling of discrete and continuum simulations of granular media. ACM Transactions on Graphics Vol. 37, No. 6, Article No. 283, 2018.
Chentanez, N.; Muller, M.; Kim, T. Y. Coupling 3D Eulerian, heightfield and particle methods for interactive simulation of large scale liquid phenomena. IEEE Transactions on Visualization and Computer Graphics Vol. 21, No. 10, 1116–1128, 2015.
Ferstl, F.; Ando, R.; Wojtan, C.; Westermann, R.; Thuerey, N. Narrow band FLIP for liquid simulations. Computer Graphics Forum Vol. 35, No. 2, 225–232, 2016.
Sato, T.; Wojtan, C.; Thuerey, N.; Igarashi, T.; Ando, R. Extended narrow band FLIP for liquid simulations. Computer Graphics Forum Vol. 37, No. 2, 169–177, 2018.
Huang, L.; Qu, Z.; Tan, X.; Zhang, X.; Michels, D. L.; Jiang, C. Ships, splashes, and waves on a vast ocean. ACM Transactions on Graphics Vol. 40, No. 6, Article No. 203, 2021.
Museth, K. VDB: High-resolution sparse volumes with dynamic topology. ACM Transactions on Graphics Vol. 32, No. 3, Article No. 27, 2013.
Gao, M.; Wang, X. L.; Wu, K.; Pradhana, A.; Sifakis, E.; Yuksel, C.; Jiang, C. GPU optimization of material point methods. ACM Transactions on Graphics Vol. 37, No. 6, Article No. 254, 2018.
Chu, J. Y.; Bin Zafar, N.; Yang, X. B. A Schur complement preconditioner for scalable parallel fluid simulation. ACM Transactions on Graphics Vol. 36, No. 5 Article No. 163, 2017.
Hu, Y. M.; Li, T. M.; Anderson, L.; Ragan-Kelley, J.; Durand, F. Taichi: A language for high-performance computation on spatially sparse data structures. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 201, 2019.
Hu, Y.; Liu, J.; Yang, X.; Xu, M.; Kuang, Y.; Xu, W.; Dai, Q.; Freeman, W. T.; Durand, F. QuanTaichi: A compiler for quantized simulations. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 182, 2021.
Liu, H. X.; Mitchell, N.; Aanjaneya, M.; Sifakis, E. A scalable schur-complement fluids solver for heterogeneous compute platforms. ACM Transactions on Graphics Vol. 35, No. 6, Article No. 201, 2016.
Wang, X. L.; Qiu, Y. X.; Slattery, S. R.; Fang, Y.; Li, M. C.; Zhu, S. C.; Zhu, Y. X.; Tang, M.; Manocha, D.; Jiang, C. A massively parallel and scalable multi-GPU material point method. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 30, 2020.
Biddiscombe, J.; Soumagne, J.; Oger, G.; Guibert, D.; Piccinali, J. G. Parallel computational steering for HPC applications using HDF5 files in distributed shared memory. IEEE Transactions on Visualization and Computer Graphics Vol. 18, No. 6, 852–864, 2012.
Mashayekhi, O.; Shah, C.; Qu, H.; Lim, A.; Levis, P. Automatically distributing eulerian and hybrid fluid simulations in the cloud. ACM Transactions on Graphics Vol. 37, No. 2, Article No. 24, 2018.
Shah, C.; Hyde, D.; Qu, H.; Levis, P. Distributing and load balancing sparse fluid simulations. Computer Graphics Forum Vol. 37, No. 8, 35–46, 2018.
Qu, H.; Mashayekhi, O.; Shah, C.; Levis, P. Accelerating distributed graphical fluid simulations with micro-partitioning. Computer Graphics Forum Vol. 39, No. 1, 375–388, 2020.
Treuille, A.; Lewis, A.; Popović, Z. Model reduction for real-time fluids. ACM Transactions on Graphics Vol. 25, No. 3, 826–834, 2006.
Stanton, M.; Sheng, Y.; Wicke, M.; Perazzi, F.; Yuen, A.; Narasimhan, S.; Treuille, A. Non-polynomial Galerkin projection on deforming meshes. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 86, 2013.
Kim, T.; Delaney, J. Subspace fluid re-simulation. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 62, 2013.
De Witt, T.; Lessig, C.; Fiume, E. Fluid simulation using Laplacian eigenfunctions. ACM Transactions on Graphics Vol. 31, No. 1, Article No. 10, 2012.
Liu, B.; Mason, G.; Hodgson, J.; Tong, Y.; Desbrun, M. Model-reduced variational fluid simulation. ACM Transactions on Graphics Vol. 34, No. 6, Article No. 244, 2015.
Zhai, X.; Hou, F.; Qin, H.; Hao, A. M. Inverse modelling of incompressible gas flow in subspace. Computer Graphics Forum Vol. 36, No. 6, 100–111, 2017.
Cui, Q. D.; Sen, P.; Kim, T. Scalable Laplacian eigenfluids. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 87, 2018.
Cui, Q. D.; Langlois, T.; Sen, P.; Kim, T. Spiral-spectral fluid simulation. ACM Transactions on Graphics Vol. 40, No. 6, Article No. 202, 2021.
Mercier, O.; Nowrouzezahrai, D. Local bases for model-reduced smoke simulations. Computer Graphics Forum Vol. 39, No. 2, 9–22, 2020.
Ladický, L.; Jeong, S.; Solenthaler, B.; Pollefeys, M.; Gross, M. Data-driven fluid simulations using regression forests. ACM Transactions on Graphics Vol. 34, No. 6, Article No. 199, 2015.
Raveendran, K.; Wojtan, C.; Thuerey, N.; Turk, G. Blending liquids. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 137, 2014.
Thuerey, N. Interpolations of smoke and liquid simulations. ACM Transactions on Graphics Vol. 36, No. 1, Article No. 3, 2016.
Oh, Y. J.; Lee, I. K. Two-step temporal interpolation network using forward advection for efficient smoke simulation. Computer Graphics Forum Vol. 40, No. 2, 355–365, 2021.
Gao, Y.; Zhang, Q. C.; Li, S.; Hao, A. M.; Qin, H. Accelerating liquid simulation with an improved data-driven method. Computer Graphics Forum Vol. 39, No. 6, 180–191, 2020.
Xiao, X. Y.; Zhou, Y. Q.; Wang, H.; Yang, X. B. A novel CNN-based Poisson solver for fluid simulation. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 3, 1454–1465, 2020.
Wiewel, S.; Becher, M.; Thuerey, N. Latent space physics: Towards learning the temporal evolution of fluid flow. Computer Graphics Forum Vol. 38, No. 2, 71–82, 2019.
Wiewel, S.; Kim, B.; Azevedo, V. C.; Solenthaler, B.; Thuerey, N. Latent space subdivision: Stable and controllable time predictions for fluid flow. Computer Graphics Forum Vol. 39, No. 8, 15–25, 2020.
Takahashi, T.; Lin, M. C. Video-guided real-to-virtual parameter transfer for viscous fluids. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 237, 2019.
Eckert, M. L.; Um, K.; Thuerey, N. ScalarFlow: A large-scale volumetric data set of real-world scalar transport flows for computer animation and machine learning. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 239, 2019.
Becker, M.; Tessendorf, H.; Teschner, M. Direct forcing for Lagrangian rigid-fluid coupling. IEEE Transactions on Visualization and Computer Graphics Vol. 15, No. 3, 493–503, 2009.
Yang, L. P.; Li, S.; Hao, A. M.; Qin, H. Realtime two-way coupling of meshless fluids and nonlinear FEM. Computer Graphics Forum Vol. 31, No. 7pt1, 2037–2046, 2012.
Schechter, H.; Bridson, R. Ghost SPH for animating water. ACM Transactions on Graphics Vol. 31, No. 4, Article No. 61, 2012.
He, X. W.; Liu, N.; Wang, G. P.; Zhang, F. J.; Li, S.; Shao, S. D.; Wang, H. A. Staggered meshless solid–fluid coupling. ACM Transactions on Graphics Vol. 31, No. 6, Article No. 149, 2012.
Akinci, N.; Ihmsen, M.; Akinci, G.; Solenthaler, B.; Teschner, M. Versatile rigid–fluid coupling for incompressible SPH. ACM Transactions on Graphics Vol. 31, No. 4 Article No. 62, 2012.
Macklin, M.; Müller, M.; Chentanez, N.; Kim, T. Y. Unified particle physics for real-time applications. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 153, 2014.
Cornelis, J.; Ihmsen, M.; Peer, A.; Teschner, M. ⅡSPH-FLIP for incompressible fluids. Computer Graphics Forum Vol. 33, No. 2, 255–262, 2014.
Peer, A.; Gissler, C.; Band, S.; Teschner, M. An implicit SPH formulation for incompressible linearly elastic solids. Computer Graphics Forum Vol. 37, No. 6, 135–148, 2018.
Takahashi, T.; Lin, M. C. A multilevel SPH solver with unified solid boundary handling. Computer Graphics Forum Vol. 35, No. 7, 517–526, 2016.
Takahashi, T.; Dobashi, Y.; Nishita, T.; Lin, M. C. An efficient hybrid incompressible SPH solver with interface handling for boundary conditions. Computer Graphics Forum Vol. 37, No. 1, 313–324, 2018.
Shao, X.; Zhou, Z.; Magnenat-Thalmann, N.; Wu, W. Stable and fast fluid–solid coupling for incompressible SPH. Computer Graphics Forum Vol. 34, No. 1, 191–204, 2015.
Band, S.; Gissler, C.; Ihmsen, M.; Cornelis, J.; Peer, A.; Teschner, M. Pressure boundaries for implicit incompressible SPH. ACM Transactions on Graphics Vol. 37, No. 2, Article No. 14, 2018.
Gissler, C.; Peer, A.; Band, S.; Bender, J.; Teschner, M. Interlinked SPH pressure solvers for strong fluid–rigid coupling. ACM Transactions on Graphics Vol. 38, No. 1, Article No. 5, 2019.
Truong, N.; Yuksel, C.; Watcharopas, C.; Levine, J. A.; Kirby, R. M. Particle merging-and-splitting. IEEE Transactions on Visualization and Computer Graphics Vol. 28, No. 12, 4546–4557, 2022.
Vines, M.; Houston, B.; Lang, J.; Lee, W. S. Vortical inviscid flows with two-way solid–fluid coupling. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 2, 303–315, 2014.
Fujisawa, M.; Miura, K. T. An efficient boundary handling with a modified density calculation for SPH. Computer Graphics Forum Vol. 34, No. 7, 155–162, 2015.
Chang, Y.; Liu, S. S.; He, X. W.; Li, S.; Wang, G. P. Semi-analytical solid boundary conditions for free surface flows. Computer Graphics Forum Vol. 39, No. 7, 131–141, 2020.
Bender, J.; Kugelstadt, T.; Weiler, M.; Koschier, D. Implicit frictional boundary handling for SPH. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 10, 2982–2993, 2020.
Clausen, P.; Wicke, M.; Shewchuk, J. R.; O'Brien, J. F. Simulating liquids and solid-liquid interactions with Lagrangian meshes. ACM Transactions on Graphics Vol. 32, No. 2, Article No. 17, 2013.
Azevedo, V. C.; Oliveira, M. M. Efficient smoke simulation on curvilinear grids. Computer Graphics Forum Vol. 32, No. 7, 235–244, 2013.
Teng, Y.; Levin, D. I. W.; Kim, T. Eulerian solid-fluid coupling. ACM Transactions on Graphics Vol. 35, No. 6, Article No. 200, 2016.
Takahashi, T.; Lin, M. C. A geometrically consistent viscous fluid solver with two-way fluid-solid coupling. Computer Graphics Forum Vol. 38, No. 2, 49–58, 2019.
Chentanez, N.; Mueller-Fischer, M. A multigrid fluid pressure solver handling separating solid boundary conditions. IEEE Transactions on Visualization and Computer Graphics Vol. 18, No. 8, 1191–1201, 2012.
Weber, D.; Mueller-Roemer, J.; Stork, A.; Fellner, D. A cut-cell geometric multigrid Poisson solver for fluid simulation. Computer Graphics Forum Vol. 34, No. 2, 481–491, 2015.
Azevedo, V. C.; Batty, C.; Oliveira, M. M. Preserving geometry and topology for fluid flows with thin obstacles and narrow gaps. ACM Transactions on Graphics Vol. 35, No. 4, Article No. 97, 2016.
Chen, Y. L.; Meier, J.; Solenthaler, B.; Azevedo, V. C. An extended cut-cell method for sub-grid liquids tracking with surface tension. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 169, 2020.
Tao, M.; Batty, C.; Ben-Chen, M.; Fiume, E.; Levin, D. I. W. VEMPIC: Particle-in-polyhedron fluid simulation for intricate solid boundaries. ACM Transactions on Graphics Vol. 41, No. 4, Article No. 115, 2022.
Gao, M.; Tampubolon, A. P.; Jiang, C.; Sifakis, E. An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Transactions on Graphics Vol. 36, No. 6, Article No. 223, 2017.
Fang, Y.; Qu, Z. Y.; Li, M. C.; Zhang, X. X.; Zhu, Y. X.; Aanjaneya, M.; Jiang, C. IQ-MPM: An interface quadrature material point method for non-sticky strongly two-way coupled nonlinear solids and fluids. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 51, 2020.
Cao, Y. D.; Chen, Y. N.; Li, M. C.; Yang, Y.; Zhang, X. X.; Aanjaneya, M.; Jiang, C. An efficient B-spline Lagrangian/Eulerian method for compressible flow, shock waves, and fracturing solids. ACM Transactions on Graphics Vol. 41, No. 5, Article No. 169, 2022.
Aanjaneya, M. An efficient solver for two-way coupling rigid bodies with incompressible flow. Computer Graphics Forum Vol. 37, No. 8, 59–68, 2018.
Lai, J. Y.; Chen, Y. G.; Gu, Y.; Batty, C.; Wan, J. W. L. Fast and scalable solvers for the fluid pressure equations with separating solid boundary conditions. Computer Graphics Forum Vol. 39, No. 2, 23–33, 2020.
Takahashi, T.; Batty, C. Monolith: A monolithic pressure-viscosity-contact solver for strong two-way rigid-rigid rigid-fluid coupling. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 182, 2020.
Ruan, L. W.; Liu, J. Y.; Zhu, B.; Sueda, S.; Wang, B.; Chen, B. Q. Solid-fluid interaction with surface-tension-dominant contact. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 120, 2021.
Akbay, M.; Nobles, N.; Zordan, V.; Shinar, T. An extended partitioned method for conservative solid-fluid coupling. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 86, 2018.
Brandt, C.; Scandolo, L.; Eisemann, E.; Hildebrandt, K. The reduced immersed method for real-time fluid-elastic solid interaction and contact simulation. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 191, 2019.
Rungjiratananon, W.; Kanamori, Y.; Nishita, T. Wetting effects in hair simulation. Computer Graphics Forum Vol. 31, No. 7pt1, 1993–2002, 2012.
Chen, Z. L.; Kim, B.; Ito, D.; Wang, H. M. Wetbrush: GPU-based 3D painting simulation at the bristle level. ACM Transactions on Graphics Vol. 34, No. 6, Article No. 200, 2015.
Fei, Y.; Maia, H. T.; Batty, C.; Zheng, C. X.; Grinspun, E. A multi-scale model for simulating liquid-hair interactions. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 56, 2017.
Fei, Y.; Batty, C.; Grinspun, E.; Zheng, C. X. A multi-scale model for coupling strands with shear-dependent liquid. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 190, 2019.
Lee, M.; Hyde, D.; Bao, M.; Fedkiw, R. A skinned tetrahedral mesh for hair animation and hair-water interaction. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 3, 1449–1459, 2019.
Huber, M.; Eberhardt, B.; Weiskopf, D. Boundary handling at cloth–fluid contact. Computer Graphics Forum Vol. 34, No. 1, 14–25, 2015.
Jiang, C.; Gast, T.; Teran, J. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 152, 2017.
Fei, Y.; Batty, C.; Grinspun, E.; Zheng, C. X. A multi-scale model for simulating liquid-fabric interactions. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 51, 2018.
Wang, X. J.; Liu, S. G.; Tong, Y. Y. Stain formation on deforming inelastic cloth. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 12, 3214–3224, 2018.
Zheng, Y.; Chen, Y.; Fei, G.; Dorsey, J.; Wu, E. Simulation of textile stains. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 7, 2471–2481, 2019.
Patkar, S.; Chaudhuri, P. Wetting of porous solids. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 9, 1592–1604, 2013.
Vantzos, O.; Azencot, O.; Wardeztky, M.; Rumpf, M.; Ben-Chen, M. Functional thin films on surfaces. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 3, 1179–1192, 2017.
Ren, B.; Yuan, T. L.; Li, C. F.; Xu, K.; Hu, S. M. Real-time high-fidelity surface flow simulation. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 8, 2411–2423, 2018.
Yang, T.; Chang, J.; Lin, M. C.; Martin, R. R.; Zhang, J. J.; Hu, S. M. A unified particle system framework for multi-phase, multi-material visual simulations. ACM Transactions on Graphics Vol. 36, No. 6, Article No. 224, 2017.
Yan, X.; Jiang, Y. T.; Li, C. F.; Martin, R. R.; Hu, S. M. Multiphase SPH simulation for interactive fluids and solids. ACM Transactions on Graphics Vol. 35, No. 4, Article No. 79, 2016.
Tampubolon, A. P.; Gast, T.; Klár, G.; Fu, C. Y.; Teran, J.; Jiang, C.; Museth, K. Multi-species simulation of porous sand and water mixtures. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 105, 2017.
Gao, M.; Pradhana, A.; Han, X. C.; Guo, Q.; Kot, G.; Sifakis, E.; Jiang, C. Animating fluid sediment mixture in particle-laden flows. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 149, 2018.
He, X. W.; Wang, H. M.; Wu, E. H. Projective peridynamics for modeling versatile elastoplastic materials. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 9, 2589–2599, 2018.
Takahashi, T.; Batty, C. FrictionalMonolith: A monolithic optimization-based approach for granular flow with contact-aware rigid-body coupling. ACM Transactions on Graphics Vol. 40, No. 6, Article No. 206, 2021.
Gao, Y.; Li, S.; Hao, A. M.; Qin, H. Simulating multi-scale, granular materials and their transitions with a hybrid Euler–Lagrange solver. IEEE Transactions on Visualization and Computer Graphics Vol. 27, No. 12, 4483–4494, 2021.
Alduán, I.; Tena, A.; Otaduy, M. A. DYVERSO: A versatile multi-phase position-based fluids solution for VFX. Computer Graphics Forum Vol. 36, No. 8, 32–44, 2017.
Yan, X.; Li, C. F.; Chen, X. S.; Hu, S. M. MPM simulation of interacting fluids and solids. Computer Graphics Forum Vol. 37, No. 8, 183–193, 2018.
Misztal, M. K.; Erleben, K.; Bargteil, A.; Fursund, J.; Christensen, B. B.; Bærentzen, J. A.; Bridson, R. Multiphase flow of immiscible fluids on unstructured moving meshes. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 1, 4–16, 2014.
Da, F.; Batty, C.; Grinspun, E. Multimaterial mesh-based surface tracking. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 112, 2014.
Li, X. S.; He, X. W.; Liu, X. H.; Zhang, J. J.; Liu, B. Q.; Wu, E. H. Multiphase interface tracking with fast semi-lagrangian contouring. IEEE Transactions on Visualization and Computer Graphics Vol. 22, No. 8, 1973–1986, 2016.
Yang, M.; Ye, J. T.; Ding, F.; Zhang, Y. B.; Yan, D. M. A semi-explicit surface tracking mechanism for multi-phase immiscible liquids. IEEE Transactions on Visualization and Computer Graphics Vol. 25, No. 10, 2873–2885, 2019.
Ren, B.; Li, C. F.; Yan, X.; Lin, M. C.; Bonet, J.; Hu, S. M. Multiple-fluid SPH simulation using a mixture model. ACM Transactions on Graphics Vol. 33, No. 5, Article No. 171, 2014.
Jiang, Y.; Li, C.; Deng, S.; Hu, S. M. A divergence-free mixture model for multiphase fluids. Computer Graphics Forum Vol. 39, No. 8, 69–77, 2020.
Yang, T.; Chang, J.; Ren, B.; Lin, M. C.; Zhang, J. J.; Hu, S. M. Fast multiple-fluid simulation using Helmholtz free energy. ACM Transactions on Graphics Vol. 34, No. 6, Article No. 201, 2015.
Chen, X. S.; Li, C. F.; Cao, G. C.; Jiang, Y. T.; Hu, S. M. A moving least square reproducing kernel particle method for unified multiphase continuum simulation. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 176, 2020.
Ren, B.; Xu, B.; Li, C. F. Unified particle system for multiple-fluid flow and porous material. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 118, 2021.
Jiang, Y.; Lan, Y. A dynamic mixture model for non-equilibrium multiphase fluids. Computer Graphics Forum Vol. 40, No. 7, 85–95, 2021.
Ren, B.; He, W.; Li, C. F.; Chen, X. Incompressibility enforcement for multiple-fluid SPH using deformation gradient. IEEE Transactions on Visualization and Computer Graphics Vol. 28, No. 10, 3417–3427, 2022.
Im, J.; Park, H.; Kim, J. H.; Kim, C. H. A particle-grid method for opaque ice formation. Computer Graphics Forum Vol. 32, No. 2pt3, 371–377, 2013.
Xue, T.; Su, H. Z.; Han, C.; Jiang, C.; Aanjaneya, M. A novel discretization and numerical solver for non-fourier diffusion. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 178, 2020.
Su, H. Z.; Xue, T.; Han, C.; Jiang, C.; Aanjaneya, M. A unified second-order accurate in time MPM formulation for simulating viscoelastic liquids with phase change. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 119, 2021.
Stomakhin, A.; Schroeder, C.; Jiang, C.; Chai, L.; Teran, J.; Selle, A. Augmented MPM for phase-change and varied materials. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 138, 2014.
Li, W.; Liu, D. M.; Desbrun, M.; Huang, J.; Liu, X. P. Kinetic-based multiphase flow simulation. IEEE Transactions on Visualization and Computer Graphics Vol. 27, No. 7, 3318–3334, 2021.
Wang, H. M.; Mucha, P. J.; Turk, G. Water drops on surfaces. ACM Transactions on Graphics Vol. 24, No. 3, 921–929, 2005.
Zhang, Y. Z.; Wang, H. M.; Wang, S.; Tong, Y. Y.; Zhou, K. A deformable surface model for real-time water drop animation. IEEE Transactions on Visualization and Computer Graphics Vol. 18, No. 8, 1281–1289, 2012.
Da, F.; Hahn, D.; Batty, C.; Wojtan, C.; Grinspun, E. Surface-only liquids. ACM Transactions on Graphics Vol. 35, No. 4, Article No. 78, 2016.
Akinci, N.; Akinci, G.; Teschner, M. Versatile surface tension and adhesion for SPH fluids. ACM Transactions on Graphics Vol. 32, No. 6, Article No. 182, 2013.
Yang, T.; Martin, R. R.; Lin, M. C.; Chang, J.; Hu, S. M. Pairwise force SPH model for real-time multi-interaction applications. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 10, 2235–2247, 2017.
He, X. W.; Wang, H. M.; Zhang, F. J.; Wang, H. A.; Wang, G. P.; Zhou, K. Robust simulation of sparsely sampled thin features in SPH-based free surface flows. ACM Transactions on Graphics Vol. 34, No. 1, Article No. 7, 2015.
Hyde, D. A. B.; Gagniere, S. W.; Marquez-Razon, A.; Teran, J. An implicit updated Lagrangian formulation for liquids with large surface energy. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 183, 2020.
Chen, J. Y.; Kala, V.; Marquez-Razon, A.; Gueidon, E.; Hyde, D. A. B.; Teran, J. A momentum-conserving implicit material point method for surface tension with contact angles and spatial gradients. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 111, 2021.
Cho, J.; Ko, H. S. Geometry-aware volume-of-fluid method. Computer Graphics Forum Vol. 32, No. 2pt3, 379–388, 2013.
Goldade, R.; Aanjaneya, M.; Batty, C. Constraint bubbles and affine regions: Reduced fluid models for efficient immersed bubbles and flexible spatial coarsening. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 43, 2020.
Padilla, M.; Chern, A.; Knöppel, F.; Pinkall, U.; Schröder, P. On bubble rings and ink chandeliers. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 129, 2019.
Langlois, T. R.; Zheng, C. X.; James, D. L. Toward animating water with complex acoustic bubbles. ACM Transactions on Graphics Vol. 35, No. 4, Article No. 95, 2016.
Popinet, S. Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries. Journal of Computational Physics Vol. 190, No. 2, 572–600, 2003.
Busaryev, O.; Dey, T. K.; Wang, H. M.; Ren, Z. Animating bubble interactions in a liquid foam. ACM Transactions on Graphics Vol. 31, No. 4, Article No. 63, 2012.
Kim, J. H.; Lee, J.; Cha, S.; Kim, C. H. Efficient representation of detailed foam waves by incorporating projective space. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 9, 2056–2068, 2017.
Wretborn, J.; Flynn, S.; Stomakhin, A. Guided bubbles and wet foam for realistic whitewater simulation. ACM Transactions on Graphics Vol. 41, No. 4, Article No. 117, 2022.
Boyd, L.; Bridson, R. MultiFLIP for energetic two-phase fluid simulation. ACM Transactions on Graphics Vol. 31, No. 2, Article No. 16, 2012.
Ando, R.; Thuerey, N.; Wojtan, C. A stream function solver for liquid simulations. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 53, 2015.
Nielsen, M. B.; Østerby, O. A two-continua approach to Eulerian simulation of water spray. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 67, 2013.
Yang, L. P.; Li, S.; Hao, A. M.; Qin, H. Hybrid particle-grid modeling for multi-scale droplet/spray simulation. Computer Graphics Forum Vol. 33, No. 7, 199–208, 2014.
Guo, Y. L.; Liu, X. P.; Xu, X. M. A unified detail-preserving liquid simulation by two-phase lattice boltzmann modeling. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 5, 1479–1491, 2017.
Li, W.; Ma, Y. H.; Liu, X. P.; Desbrun, M. Efficient kinetic simulation of two-phase flows. ACM Transactions on Graphics Vol. 41, No. 4, Article No. 114, 2022.
Ruuth, S. J.; Merriman, B. A simple embedding method for solving partial differential equations on surfaces. Journal of Computational Physics Vol. 227, No. 3, 1943–1961, 2008.
Auer, S.; MacDonald, C. B.; Treib, M.; Schneider, J.; Westermann, R. Real-time fluid effects on surfaces using the closest point method. Computer Graphics Forum Vol. 31, No. 6, 1909–1923, 2012.
Auer, S.; Westermann, R. A semi-Lagrangian closest point method for deforming surfaces. Computer Graphics Forum Vol. 32, No. 7, 207–214, 2013.
Kim, T.; Tessendorf, J.; Thürey, N. Closest point turbulence for liquid surfaces. ACM Transactions on Graphics Vol. 32, No. 2, Article No. 15, 2013.
Mercier, O.; Beauchemin, C.; Thuerey, N.; Kim, T.; Nowrouzezahrai, D. Surface turbulence for particle-based liquid simulations. ACM Transactions on Graphics Vol. 34, No. 6, Article No. 202, 2015.
Goldade, R.; Batty, C.; Wojtan, C. A practical method for high-resolution embedded liquid surfaces. Computer Graphics Forum Vol. 35, No. 2, 233–242, 2016.
Morgenroth, D.; Reinhardt, S.; Weiskopf, D.; Eberhardt, B. Efficient 2D simulation on moving 3D surfaces. Computer Graphics Forum Vol. 39, No. 8, 27–38, 2020.
Pan, Z. R.; Huang, J.; Tong, Y. Y.; Bao, H. J. Wake synthesis for shallow water equation. Computer Graphics Forum Vol. 31, No. 7pt1, 2029–2036, 2012.
Azencot, O.; Weißmann, S.; Ovsjanikov, M.; Wardetzky, M.; Ben-Chen, M. Functional fluids on surfaces. Computer Graphics Forum Vol. 33, No. 5, 237–246, 2014.
Azencot, O.; Vantzos, O.; Ben-Chen, M. An explicit structure-preserving numerical scheme for EPDiff. Computer Graphics Forum Vol. 37, No. 5, 107–119, 2018.
Holm, D. D.; Schmah, T.; Stoica, C. Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions. Oxford University Press, 2009.
Canabal, J. A.; Miraut, D.; Thuerey, N.; Kim, T.; Portilla, J.; Otaduy, M. A. Dispersion kernels for water wave simulation. ACM Transactions on Graphics Vol. 35, No. 6, Article No. 202, 2016.
Jeschke, S.; Wojtan, C. Water wave animation via wavefront parameter interpolation. ACM Transactions on Graphics Vol. 34, No. 3, Article No. 27, 2015.
Jeschke, S.; Wojtan, C. Water wave packets. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 103, 2017.
Skrivan, T.; Soderstrom, A.; Johansson, J.; Sprenger, C.; Museth, K.; Wojtan, C. Wave curves: Simulating Lagrangian water waves on dynamically deforming surfaces. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 65, 2020.
Nielsen, M. B.; Söderström, A.; Bridson, R. Synthesizing waves from animated height fields. ACM Transactions on Graphics Vol. 32, No. 1, Article No. 2, 2013.
Schreck, C.; Hafner, C.; Wojtan, C. Fundamental solutions for water wave animation. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 130, 2019.
Jeschke, S.; Skrivan, T.; Müller-Fischer, M.; Chentanez, N.; Macklin, M.; Wojtan, C. Water surface wavelets. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 94, 2018.
Jeschke, S.; Hafner, C.; Chentanez, N.; Macklin, M.; Müller-Fischer, M.; Wojtan, C. Making procedural water waves boundary-aware. Computer Graphics Forum Vol. 39, No. 8, 47–54, 2020.
Schreck, C.; Wojtan, C. Coupling 3D liquid simulation with 2D wave propagation for large scale water surface animation using the equivalent sources method. Computer Graphics Forum Vol. 41, No. 2, 343–353, 2022.
Bojsen-Hansen, M.; Li, H.; Wojtan, C. Tracking surfaces with evolving topology. ACM Transactions on Graphics Vol. 31, No. 4, Article No. 53, 2012.
Bojsen-Hansen, M.; Wojtan, C. Liquid surface tracking with error compensation. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 68, 2013.
Edwards, E.; Bridson, R. Detailed water with coarse grids: Combining surface meshes and adaptive discontinuous Galerkin. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 136, 2014.
Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis Vol. 39, No. 5, 1749–1779, 2002.
Chentanez, N.; Müller, M.; Macklin, M.; Kim, T. Y. Fast grid-free surface tracking. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 148, 2015.
Yu, J. H.; Wojtan, C.; Turk, G.; Yap, C. Explicit mesh surfaces for particle based fluids. Computer Graphics Forum Vol. 31, No. 2pt4, 815–824, 2012.
Yu, J. H.; Turk, G. Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Transactions on Graphics Vol. 32, No. 1, Article No. 5, 2013.
Sandim, M.; Cedrim, D.; Nonato, L. G.; Pagliosa, P.; Paiva, A. Boundary detection in particle-based fluids. Computer Graphics Forum Vol. 35, No. 2, 215–224, 2016.
Dagenais, F.; Gagnon, J.; Paquette, E. Detail-preserving explicit mesh projection and topology matching for particle-based fluids. Computer Graphics Forum Vol. 36, No. 8, 444–457, 2017.
Jang, T.; Kim, H.; Bae, J.; Seo, J.; Noh, J. Multilevel vorticity confinement for water turbulence simulation. The Visual Computer Vol. 26, No. 6, 873–881, 2010.
He, S.; Lau, R. W. H. Synthetic controllable turbulence using robust second vorticity confinement. Computer Graphics Forum Vol. 32, No. 1, 27–35, 2013.
Zhang, X. X.; Bridson, R.; Greif, C. Restoring the missing vorticity in advection-projection fluid solvers. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 52, 2015.
Liu, S. N.; Wang, X. K.; Ban, X. J.; Xu, Y. R.; Zhou, J.; Kosinka, J.; Telea, A. C. Turbulent details simulation for SPH fluids via vorticity refinement. Computer Graphics Forum Vol. 40, No. 1, 54–67, 2021.
Xiong, S. Y.; Tao, R.; Zhang, Y. R.; Feng, F.; Zhu, B. Incompressible flow simulation on vortex segment clouds. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 98, 2021.
Golas, A.; Narain, R.; Sewall, J.; Krajcevski, P.; Dubey, P.; Lin, M. Large-scale fluid simulation using velocity–vorticity domain decomposition. ACM Transactions on Graphics Vol. 31, No. 6, Article No. 148, 2012.
Zhang, X. X.; Li, M. C.; Bridson, R. Resolving fluid boundary layers with particle strength exchange and weak adaptivity. ACM Transactions on Graphics Vol. 35, No. 4, Article No. 76, 2016.
Liao, X.; Si, W.; Yuan, Z.; Sun, H.; Qin, J.; Wang, Q.; Heng, P. A.; Liao, X.; Si, W.; Yuan, Z.; et al. Animating wall-bounded turbulent smoke via filament-mesh particle–particle method. IEEE Transactions on Visualization and Computer Graphics Vol. 24, No. 3, 1260–1273, 2018.
Wu, X. Y.; Yang, X. B.; Yang, Y. A novel projection technique with detail capture and shape correction for smoke simulation. Computer Graphics Forum Vol. 32, No. 2pt4, 389–397, 2013.
Zehnder, J.; Narain, R.; Thomaszewski, B. An advection–reflection solver for detail-preserving fluid simulation. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 85, 2018.
Nabizadeh, M. S.; Wang, S.; Ramamoorthi, R.; Chern, A. Covector fluids. ACM Transactions on Graphics Vol. 41, No. 4, Article No. 113, 2022.
Yang, S.; Xiong, S.; Zhang, Y.; Feng, F.; Liu, J.; Zhu, B. Clebsch gauge fluid. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 99, 2021.
Xiong, S. Y.; Wang, Z. C.; Wang, M. D.; Zhu, B. A Clebsch method for free-surface vortical flow simulation. ACM Transactions on Graphics Vol. 41, No. 4, Article No. 116, 2022.
Feng, F.; Liu, J. Y.; Xiong, S. Y.; Yang, S. Q.; Zhang, Y. R.; Zhu, B. Impulse fluid simulation. IEEE Transactions on Visualization and Computer Graphics Vol. 29, No. 6, 3081–3092, 2023.
Liu, X. P.; Pang, W. M.; Qin, J.; Fu, C. W. Turbulence simulation by adaptive multi-relaxation lattice boltzmann modeling. IEEE Transactions on Visualization and Computer Graphics Vol. 20, No. 2, 289–302, 2014.
Li, W.; Chen, Y. X.; Desbrun, M.; Zheng, C. X.; Liu, X. P. Fast and scalable turbulent flow simulation with two-way coupling. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 47, 2020.
Lyu, C. Y.; Li, W.; Desbrun, M.; Liu, X. P. Fast and versatile fluid–solid coupling for turbulent flow simulation. ACM Transactions on Graphics Vol. 40, No. 6, Article No. 201, 2021.
Jamriška, O.; Fišer, J.; Asente, P.; Lu, J. W.; Shechtman, E.; Sýkora, D. LazyFluids: Appearance transfer for fluid animations. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 92, 2015.
Gagnon, J.; Guzmán, J. E.; Vervondel, V.; Dagenais, F.; Mould, D.; Paquette, E. Distribution update of deformable patches for texture synthesis on the free surface of fluids. Computer Graphics Forum Vol. 38, No. 7, 491–500, 2019.
Gagnon, J.; Guzmán, J. E.; Mould, D.; Paquette, E. Patch erosion for deformable lapped textures on 3D fluids. Computer Graphics Forum Vol. 40, No. 2, 367–374, 2021.
Sato, S.; Dobashi, Y.; Kim, T.; Nishita, T. Example-based turbulence style transfer. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 84, 2018.
Kim, B.; Azevedo, V. C.; Gross, M.; Solenthaler, B. Transport-based neural style transfer for smoke simulations. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 188, 2019.
Kim, B.; Azevedo, V. C.; Gross, M.; Solenthaler, B. Lagrangian neural style transfer for fluids. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 52, 2020.
Guo, J.; Li, M. T.; Zong, Z. J.; Liu, Y. T.; He, J. W.; Guo, Y. W.; Yan, L. Q. Volumetric appearance stylization with stylizing kernel prediction network. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 162, 2021.
Xie, Y.; Franz, E.; Chu, M. Y.; Thuerey, N. tempoGAN: A temporally coherent, volumetric GAN for super-resolution fluid flow. ACM Transactions on Graphics Vol. 37, No. 4, Article No. 95, 2018.
Zhang, Y. B.; Ma, K. L. Spatio-temporal extrapolation for fluid animation. ACM Transactions on Graphics Vol. 32, No. 6, Article No. 183, 2013.
Chu, M. Y.; Thuerey, N. Data-driven synthesis of smoke flows with CNN-based feature descriptors. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 69, 2017.
Um, K.; Hu, X. Y.; Thuerey, N. Perceptual evaluation of liquid simulation methods. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 143, 2017.
Xiao, X. Y.; Wang, H.; Yang, X. B. A CNN-based flow correction method for fast preview. Computer Graphics Forum Vol. 38, No. 2, 431–440, 2019.
Li, C.; Qiu, S.; Wang, C. B.; Qin, H. Learning physical parameters and detail enhancement for gaseous scene design based on data guidance. IEEE Transactions on Visualization and Computer Graphics Vol. 27, No. 10, 3867–3880, 2021.
Bai, K.; Li, W.; Desbrun, M.; Liu, X. P. Dynamic upsampling of smoke through dictionary-based learning. ACM Transactions on Graphics Vol. 40, No. 1, Article No. 4, 2020.
Bai, K.; Wang, C. H.; Desbrun, M.; Liu, X. P. Predicting high-resolution turbulence details in space and time. ACM Transactions on Graphics Vol. 40, No. 6, Article No. 200, 2021.
Roy, B.; Poulin, P.; Paquette, E. Neural UpFlow: A scene flow learning approach to increase the apparent resolution of particle-based liquids. Proceedings of the ACM on Computer Graphics and Interactive Techniques Vol. 4, No. 3, Article No. 40, 2021.
Gregson, J.; Ihrke, I.; Thuerey, N.; Heidrich, W. From capture to simulation: Connecting forward and inverse problems in fluids. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 139, 2014.
Forootaninia, Z.; Narain, R. Frequency-domain smoke guiding. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 172, 2020.
Inglis, T.; Eckert, M. L.; Gregson, J.; Thuerey, N. Primal-dual optimization for fluids. Computer Graphics Forum Vol. 36, No. 8, 354–368, 2017.
Pan, Z. R.; Manocha, D. Efficient solver for spacetime control of smoke. ACM Transactions on Graphics Vol. 36, No. 5, Article No. 162, 2017.
Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning Vol. 3, No. 1, 1–122, 2011.
Tang, J. W.; Azevedo, V. C.; Cordonnier, G.; Solenthaler, B. Honey, I shrunk the domain: Frequency-aware force field reduction for efficient fluids optimization. Computer Graphics Forum Vol. 40, No. 2, 339–353, 2021.
Sato, S.; Dobashi, Y.; Nishita, T. Editing fluid animation using flow interpolation. ACM Transactions on Graphics Vol. 37, No. 5, Article No. 173, 2018.
Flynn, S.; Egbert, P.; Holladay, S.; Morse, B. Fluid carving: Intelligent resizing for fluid simulation data. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 238, 2019.
Flynn, S.; Hart, D.; Morse, B.; Holladay, S.; Egbert, P. Generalized fluid carving with fast lattice-guided seam computation. ACM Transactions on Graphics Vol. 40, No. 6, Article No. 255, 2021.
Bojsen-Hansen, M.; Wojtan, C. Generalized non-reflecting boundaries for fluid re-simulation. ACM Transactions on Graphics Vol. 35, No. 4, Article No. 96, 2016.
Stomakhin, A.; Selle, A. Fluxed animated boundary method. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 68, 2017.
Pan, Z. R.; Huang, J.; Tong, Y. Y.; Zheng, C. X.; Bao, H. J. Interactive localized liquid motion editing. ACM Transactions on Graphics Vol. 32, No. 6, Article No. 184, 2013.
Lu, J. M.; Chen, X. S.; Yan, X.; Li, C. F.; Lin, M.; Hu, S. M. A rigging-skinning scheme to control fluid simulation. Computer Graphics Forum Vol. 38, No. 7, 501–512, 2019.
Yan, G. W.; Chen, Z. L.; Yang, J. M.; Wang, H. M. Interactive liquid splash modeling by user sketches. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 165, 2020.
Schoentgen, A.; Poulin, P.; Darles, E.; Meseure, P. Particle-based liquid control using animation templates. Computer Graphics Forum Vol. 39, No. 8, 79–88, 2020.
Okabe, M.; Dobashi, Y.; Anjyo, K.; Onai, R. Fluid volume modeling from sparse multi-view images by appearance transfer. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 93, 2015.
Eckert, M.; Heidrich, W.; Thuerey, N. Coupled fluid density and motion from single views. Computer Graphics Forum Vol. 37, No. 8, 47–58, 2018.
Nie, X. Y.; Hu, Y.; Su, Z. Y.; Shen, X. K. Fluid reconstruction and editing from a monocular video based on the SPH model with external force guidance. Computer Graphics Forum Vol. 40, No. 6, 62–76, 2021.
Zhu, B.; Lee, M.; Quigley, E.; Fedkiw, R. Codimensional non-Newtonian fluids. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 115, 2015.
Takahashi, T.; Dobashi, Y.; Fujishiro, I.; Nishita, T.; Lin, M. C. Implicit formulation for SPH-based viscous fluids. Computer Graphics Forum Vol. 34, No. 2, 493–502, 2015.
Peer, A.; Ihmsen, M.; Cornelis, J.; Teschner, M. An implicit viscosity formulation for SPH fluids. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 114, 2015.
Peer, A.; Teschner, M. Prescribed velocity gradients for highly viscous SPH fluids with vorticity diffusion. IEEE Transactions on Visualization and Computer Graphics Vol. 23, No. 12, 2656–2662, 2017.
Weiler, M.; Koschier, D.; Brand, M.; Bender, J. A physically consistent implicit viscosity solver for SPH fluids. Computer Graphics Forum Vol. 37, No. 2, 145–155, 2018.
Monaghan, J. J. Smoothed particle hydrodynamics. Reports on Progress in Physics Vol. 68, No. 8, 1703–1759, 2005.
Larionov, E.; Batty, C.; Bridson, R. Variational stokes: A unified pressure-viscosity solver for accurate viscous liquids. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 101, 2017.
Liu, S. S.; He, X. W.; Wang, W. C.; Wu, E. H. Adapted SIMPLE algorithm for incompressible SPH fluids with a broad range viscosity. IEEE Transactions on Visualization and Computer Graphics Vol. 28, No. 9, 3168–3179, 2022.
Yue, Y. H.; Smith, B.; Batty, C.; Zheng, C. X.; Grinspun, E. Continuum foam: A material point method for shear-dependent flows. ACM Transactions on Graphics Vol. 34, No. 5, Article No. 160, 2015.
Nagasawa, K.; Suzuki, T.; Seto, R.; Okada, M.; Yue, Y. H. Mixing sauces: A viscosity blending model for shear thinning fluids. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 95, 2019.
Rusin, M. The structure of nonlinear blending models. Chemical Engineering Science Vol. 30, No. 8, 937–944, 1975.
Barreiro, H.; García-Fernández, I.; Alduán, I.; Otaduy, M. A. Conformation constraints for efficient viscoelastic fluid simulation. ACM Transactions on Graphics Vol. 36, No. 6, Article No. 221, 2017.
Huang, L. B.; Hädrich, T.; Michels, D. L. On the accurate large-scale simulation of ferrofluids. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 93, 2019.
Shao, H.; Huang, L. B.; Michels, D. L. A current loop model for the fast simulation of ferrofluids. IEEE Transactions on Visualization and Computer Graphics Vol. 29, No. 12, 5394–5405, 2023.
Ni, X. Y.; Zhu, B.; Wang, B.; Chen, B. Q. A level-set method for magnetic substance simulation. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 29, 2020.
Huang, L. B.; Michels, D. L. Surface-only ferrofluids. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 174, 2020.
Sun, Y. C.; Ni, X. Y.; Zhu, B.; Wang, B.; Chen, B. Q. A material point method for nonlinearly magnetized materials. ACM Transactions on Graphics Vol. 40, No. 6, Article No. 205, 2021.
Batty, C.; Uribe, A.; Audoly, B.; Grinspun, E. Discrete viscous sheets. ACM Transactions on Graphics Vol. 31, No. 4, Article No. 113, 2012.
Wang, H.; Jin, Y. X.; Luo, A. Q.; Yang, X. B.; Zhu, B. Codimensional surface tension flow using moving-least-squares particles. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 42, 2020.
Zhu, B.; Quigley, E.; Cong, M.; Solomon, J.; Fedkiw, R. Codimensional surface tension flow on simplicial complexes. ACM Transactions on Graphics Vol. 33, No. 4, Article No. 111, 2014.
Wang, M. D.; Deng, Y. T.; Kong, X. X.; Prasad, A. H.; Xiong, S. Y.; Zhu, B. Thin-film smoothed particle hydrodynamics fluid. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 110, 2021.
Vantzos, O.; Raz, S.; Ben-Chen, M. Real-time viscous thin films. ACM Transactions on Graphics Vol. 37, No. 6, Article No. 281, 2018.
Da, F.; Batty, C.; Wojtan, C.; Grinspun, E. Double bubbles sans toil and trouble: Discrete circulation-preserving vortex sheets for soap films and foams. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 149, 2015.
Ishida, S.; Yamamoto, M.; Ando, R.; Hachisuka, T. A hyperbolic geometric flow for evolving films and foams. ACM Transactions on Graphics Vol. 36, No. 6, Article No. 199, 2017.
Ishida, S.; Synak, P.; Narita, F.; Hachisuka, T.; Wojtan, C. A model for soap film dynamics with evolving thickness. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 31, 2020.
Hill, D. J.; Henderson, R. D. Efficient fluid simulation on the surface of a sphere. ACM Transactions on Graphics Vol. 35, No. 2, Article No. 16, 2016.
Huang, W. Z.; Iseringhausen, J.; Kneiphof, T.; Qu, Z. Y.; Jiang, C.; Hullin, M. B. Chemomechanical simulation of soap film flow on spherical bubbles. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 41, 2020.
Deng, Y. T.; Wang, M. D.; Kong, X. X.; Xiong, S. Y.; Xian, Z.; Zhu, B. A moving Eulerian–Lagrangian particle method for thin film and foam simulation. ACM Transactions on Graphics Vol. 41, No. 4, Article No. 154, 2022.
276
Views
34
Downloads
1
Crossref
2
Web of Science
2
Scopus
0
CSCD
Altmetrics
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.