AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nonlinear semi-analytical uncertainty propagation of trajectory under impulsive maneuvers

Zhen YangYa-Zhong Luo( )Jin Zhang
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
Show Author Information

Graphical Abstract

Abstract

The usage of state transition tensors (STTs) was proved as an effective method for orbital uncertainty propagation. However, orbital maneuvers and their uncertainties are not considered in current STT-based methods. Uncertainty propagation of spacecraft trajectory with maneuvers plays an important role in spaceflight missions, e.g., the rendezvous phasing mission. Under the effects of impulsive maneuvers, the nominal trajectory of a spacecraft will be divided into several segments. If the uncertainty is piecewise propagated using the STTs one after another, large approximation errors will be introduced. To overcome this challenge, a set of modified STTs is derived, which connects the segmented trajectories together and allows for directly propagating uncertainty from the initial time to the final time. These modified STTs are then applied to analytically propagate the statistical moments of navigation and impulsive maneuver uncertainties. The probability density function is obtained by combining STTs with the Gaussian mixture model. The proposed uncertainty propagator is shown to be efficient and affords good agreement with Monte Carlo simulations. It also has no dimensionality problem for high-dimensional uncertainty propagation.

References

[1]
Rovetto, R. J., Kelso, T. S. Preliminaries of a space situational awareness ontology. In: Proceedings of the 26th AIAA/AAS Space Flight Mechanics Meeting, 2016.
[2]
Battin, R. H. An Introduction to the Mathematics and Methods of Astrodynamics. American Institute of Aeronautics and Astronautics, 1999.
[3]
Geller, D. K. Linear covariance techniques for orbital rendezvous analysis and autonomous onboard mission planning. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1404-1414.
[4]
Sabol, C., Hill, K., Alfriend, K., Sukut, T. Nonlinear effects in the correlation of tracks and covariance propagation. Acta Astronautica, 2013, 84: 69-80.
[5]
Vittaldev, V., Russell, R. P. Space object collision probability via Monte Carlo on the graphics processing unit. The Journal of the Astronautical Sciences, 2017, 64(3): 285-309.
[6]
Junkins, J. L., Akella, M. R., Alfriend, K. T. Non-Gaussian error propagation in orbital mechanics. Guidance and Control, 1996, 1996: 283-298.
[7]
Junkins, J. L., Singla, P. How nonlinear is it? A tutorial on nonlinearity of orbit and attitude dynamics. Advances in the Astronautical Sciences, 2003, 115(SUPPL.): 1-45.
[8]
Julier, S. J., Uhlmann, J. K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401-422.
[9]
Park, R. S., Scheeres, D. J. Nonlinear mapping of Gaussian statistics: Theory and applications to spacecraft trajectory design. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1367-1375.
[10]
Fujimoto, K., Scheeres, D. J., Alfriend, K. T. Analytical nonlinear propagation of uncertainty in the two-body problem. Journal of Guidance, Control, and Dynamics, 2012, 35(2): 497-509.
[11]
Park, I., Scheeres, D. J. Hybrid method for uncertainty propagation of orbital motion. Journal of Guidance, Control, and Dynamics, 2018, 41(1): 240-254.
[12]
Yang, Z., Luo, Y.-Z., Zhang, J., Tang, G.-J. Uncertainty quantification for short rendezvous missions using a nonlinear covariance propagation method. Journal of Guidance, Control, and Dynamics, 2016, 39(9): 2170-2178.
[13]
Hernando-Ayuso, J., Bombardelli, C. Orbit covariance propagation via quadratic-order state transition matrix in curvilinear coordinates. Celestial Mechanics and Dynamical Astronomy, 2017, 129(1-2): 215-234.
[14]
Yang, Z., Luo, Y.-Z., Lappas, V., Tsourdos, A. Nonlinear analytical uncertainty propagation for relative motion near J2-perturbed elliptic orbits. Journal of Guidance, Control, and Dynamics, 2018, 41(4): 888-903.
[15]
Berz, M. Modern Map Methods in Particle Beam Physics. Academic Press, 1999.
[16]
Valli, M., Armellin, R., Di Lizia, P., Lavagna, M. R. Nonlinear mapping of uncertainties in celestial mechanics. Journal of Guidance, Control, and Dynamics, 2013, 36(1): 48-63.
[17]
Morselli, A., Armellin, R., Di Lizia, P., Bernelli Zazzera, F. A high order method for orbital con-junctions analysis: Monte Carlo collision probability computation. Advances in Space Research, 2015, 55(1): 311-333.
[18]
Wittig, A., Di Lizia, P., Armellin, R., Makino, K., Bernelli-Zazzera, F., Berz, M. Propagation of large uncertainty sets in orbital dynamics by automatic domain splitting. Celestial Mechanics and Dynamical Astronomy, 2015, 122(3): 239-261.
[19]
Wittig, A., Colombo, C., Armellin, R. Long-term density evolution through semi-analytical and differential algebra techniques. Celestial Mechanics and Dynamical Astronomy, 2017, 128(4): 435-452.
[20]
Riccardi, A., Tardioli, C., Vasile, M. An intrusive approach to uncertainty propagation in orbital mechanics based on Tchebycheff polynomial algebra. In: Astrodynamics 2015. Advances in Astrnautical Sciences. American Astronautical Society, 2015: 707-722.
[21]
Jones, B. A., Doostan, A., Born, G. H. Nonlinear propagation of orbit uncertainty using non-intrusive polynomial chaos. Journal of Guidance, Control, and Dynamics, 2013, 36(2): 430-444.
[22]
Jones, B. A., Doostan, A. Satellite collision probability estimation using polynomial chaos expansions. Advances in Space Research, 2013, 52(11): 1860-1875.
[23]
Jones, B. A., Parrish, N., Doostan, A. Postmaneuver collision probability estimation using sparse polynomial chaos expansions. Journal of Guidance, Control, and Dynamics, 2015, 38(8): 1425-1437.
[24]
Vetrisano, M., Vasile, M. Analysis of spacecraft disposal solutions from LPO to the Moon with high order polynomial expansions. Advances in Space Research, 2017, 60(1): 38-56.
[25]
Bierbaum, M. M., Joseph, R. I., Fry, R. L., Nelson, J. B. A Fokker-Planck model for a two-body problem. AIP Conference Proceedings, 2002, 617(1): 340-371.
[26]
Horwood, J. T., Aragon, N. D., Poore, A. B. Gaussian sum filters for space surveillance: Theory and simulations. Journal of Guidance, Control, and Dynamics, 2011, 34(6): 1839-1851.
[27]
DeMars, K. J., Bishop, R. H., Jah, M. K. Entropy-based approach for uncertainty propagation of nonlinear dynamical systems. Journal of Guidance, Control, and Dynamics, 2013, 36(4): 1047-1057.
[28]
Vishwajeet, K., Singla, P., Jah, M. Nonlinear uncertainty propagation for perturbed two-body orbits. Journal of Guidance, Control, and Dynamics, 2014, 37(5): 1415-1425.
[29]
Vittaldev, V., Russell, R. P. Space object collision probability using multidirectional Gaussian mixture models. Journal of Guidance, Control, and Dynamics, 2016, 39(9): 2163-2169.
[30]
Fujimoto, K., Scheeres, D. J. Tractable expressions for nonlinearly propagated uncertainties. Journal of Guidance, Control, and Dynamics, 2015, 38(6): 1146-1151.
[31]
Vittaldev, V., Russell, R. P., Linares, R. Spacecraft uncertainty propagation using Gaussian mixture models and polynomial chaos expansions. Journal of Guidance, Control, and Dynamics, 2016, 39(12): 2615-2626.
[32]
Luo, Y.-Z., Yang, Z. A review of uncertainty pro-pagation in orbital mechanics. Progress in Aerospace Sciences, 2017, 89: 23-39.
[33]
Vallado, D. A. Fundamentals of Astrodynamics and Applications, 3rd edn. Microscosm Press, 2007.
[34]
Fehse, W. Automated Rendezvous and Docking of Spacecraft. Cambridge University Press, 2003.
[35]
Phillips, K. R function to symbolically compute the central moments of the multivariate normal distribution. Journal of Statistical Software, 2010, 33(1): 1-14.
[36]
Terejanu, G., Singla, P., Singh, T., Scott, P. D. Uncertainty propagation for nonlinear dynamic systems using Gaussian mixture models. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1623-1633.
[37]
Yang, Z., Luo, Y.-Z., Zhang, J., Tang, G.-J. Homotopic perturbed Lambert algorithm for long-duration rendezvous optimization. Journal of Guidance, Control, and Dynamics, 2015, 38(11): 2215-2223.
Astrodynamics
Pages 61-77
Cite this article:
Yang Z, Luo Y-Z, Zhang J. Nonlinear semi-analytical uncertainty propagation of trajectory under impulsive maneuvers. Astrodynamics, 2019, 3(1): 61-77. https://doi.org/10.1007/s42064-018-0036-7

548

Views

22

Crossref

20

Web of Science

21

Scopus

5

CSCD

Altmetrics

Received: 13 June 2018
Accepted: 06 October 2018
Published: 14 December 2018
© Tsinghua University Press 2018
Return