AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Optimal solar sail transfers to circular Earth-synchronous displaced orbits

Alessandro A. Quarta( )Giovanni MengaliMarco Bassetto
Department of Civil and Industrial Engineering, University of Pisa, Pisa I-56122, Italy
Show Author Information

Graphical Abstract

Abstract

The aim of this paper is to evaluate the minimum flight time of a solar sail-based spacecraft towards Earth-synchronous (heliocentric) circular displaced orbits. These are special displaced non-Keplerian orbits characterized by a period of one year, which makes them suitable for the observation of Earth’s polar regions. The solar sail is modeled as a flat and purely reflective film with medium-low performance, that is, with a characteristic acceleration less than one millimeter per second squared. Starting from a circular parking orbit of radius equal to one astronomical unit, the optimal steering law is sought by considering the characteristic acceleration that is required for the maintenance of the target Earth-synchronous displaced orbit. The indirect approach used for the calculation of the optimal transfer trajectory allows the minimum flight time to be correlated with several Earth-synchronous displaced orbits, each one being characterized by given values of Earth-spacecraft distance and displacement over the ecliptic. The proposed mathematical model is validated by comparison with results available in the literature, in which a piecewise-constant steering law is used to find the optimal flight time for a transfer towards a one-year Type I non-Keplerian orbit.

References

[1]
McKay, R. J., Macdonald, M., Biggs, J., McInnes, C. Survey of highly non-Keplerian orbits with low-thrust propulsion. Journal of Guidance, Control, and Dynamics, 2011, 34(3): 645-666.
[2]
McInnes, C. R. Dynamics, stability, and control of displaced non-Keplerian orbits. Journal of Guidance, Control, and Dynamics, 1998, 21(5): 799-805.
[3]
Bookless, J., McInnes, C. Dynamics and control of displaced periodic orbits using solar-sail propulsion. Journal of Guidance, Control, and Dynamics, 2006, 29(3): 527-537.
[4]
McInnes, C. R. Displaced non-Keplerian orbits using impulsive thrust. Celestial Mechanics and Dynamical Astronomy, 2011, 110(3): 199-215.
[5]
Caruso, A., Mengali, G., Quarta, A. A. Elliptic displaced orbit approximation with equally spaced impulses. Journal of Guidance, Control, and Dynamics, 2019, 42(2): 411-415.
[6]
Tsuda, Y., Mori, O., Funase, R., Sawada, H., Yamamoto, T., Saiki, T., Endo, T., Kawaguchi, J. Flight status of IKAROS deep space solar sail demonstrator. Acta Astronautica, 2011, 69(9-10): 833-840.
[7]
Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G., Adams, C. NanoSail-D: a solar sail demonstration mission. Acta Astronautica, 2011, 68(5-6): 571-575.
[8]
Johnson, L., Young, R., Barnes, N., Friedman, L., Lappas, V., McInnes, C. Solar sails: technology and demonstration status. International Journal of Aeronautical and Space Sciences, 2012, 13(4): 421-427.
[9]
Johnson, L., Young, R., Montgomery, E., Alhorn, D. Status of solar sail technology within NASA. Advances in Space Research, 2011, 48(11): 1687-1694.
[10]
Janhunen, P., Sandroos, A. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. Annales Geophysicae, 2007, 25(3): 755-767.
[11]
Mengali, G., Quarta, A. A., Janhunen, P. Electric sail performance analysis. Journal of Spacecraft and Rockets, 2008, 45(1): 122-129.
[12]
Ceriotti, M., McInnes, C. R., Diedrich, B. L. The pole-sitter mission concept: An overview of recent developments and possible future applications. In: Proceedings of the 62nd International Astronautical Congress, 2011: 2543-2559.
[13]
Ceriotti, M., Heiligers, J., McInnes, C. R. Trajectory and spacecraft design for a pole-sitter mission. Journal of Spacecraft and Rockets, 2014, 51(1): 311-326.
[14]
Ceriotti, M., McInnes, C. R. Natural and sail-displaced doubly-symmetric Lagrange point orbits for polar coverage. Celestial Mechanics and Dynamical Astronomy, 2012, 114(1-2): 151-180.
[15]
Heiligers, J., Parker, J. S., Macdonald, M. Novel solar-sail mission concepts for high-latitude earth and lunar observation. Journal of Guidance, Control, and Dynamics, 2018, 41(1): 212-230.
[16]
Ozimek, M. T., Grebow, D. J., Howell, K. C. Design of solar sail trajectories with applications to lunar south pole coverage. Journal of Guidance, Control, and Dynamics, 2009, 32(6): 1884-1897.
[17]
Wawrzyniak, G. G., Howell, K. C. Investigating the design space for solar sail trajectories in the earth-moon system. The Open Aerospace Engineering Journal, 2011, 4(1): 26-44.
[18]
Heiligers, J., Scheeres, D. J. Solar-sail orbital motion about asteroids and binary asteroid systems. Journal of Guidance, Control, and Dynamics, 2018, 41(9): 1947-1962.
[19]
Macdonald, M., McKay, R. J., Vasile, M., De Frescheville, F. B., Biggs, J., McInnes, C. Low-thrust-enabled highly-non-Keplerian orbits in support of future Mars exploration. Journal of Guidance, Control, and Dynamics, 2011, 34(5):1396-1411.
[20]
West, J. L. The GeoStorm warning mission: enhanced opportunities based on new technology. In: Proceedings of the 14th AAS/AIAA Space Flight Mechanics Conference, 2004: 29-42.
[21]
Gong, S. P., Li, J. F. Solar sail heliocentric elliptic displaced orbits. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 2021-2026.
[22]
Gong, S. P., Li, J. F. Spin-stabilized solar sail for displaced solar orbits. Aerospace Science and Technology, 2014, 32(1): 188-199.
[23]
Song, M., He, X. S., He, D. S. Displaced orbits for solar sail equipped with reflectance control devices in Hill’s restricted three-body problem with oblateness. Astrophysics and Space Science, 2016, 361(10): 327.
[24]
Mengali, G., Quarta, A. A. Non-Keplerian orbits for electric sails. Celestial Mechanics and Dynamical Astronomy, 2009, 105(1-3): 179-195.
[25]
Niccolai, L., Quarta, A. A., Mengali, G. Electric sail-based displaced orbits with a refined thrust model. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(3): 423-432.
[26]
Niccolai, L., Quarta, A. A., Mengali, G. Electric sail elliptic displaced orbits with advanced thrust model. Acta Astronautica, 2017, 138: 503-511.
[27]
Powers, R. B., Coverstone, V. L. Optimal solar sail orbit transfers to synchronous orbits. Journal of the Astronautical Sciences, 2001, 49(2): 269-281.
[28]
Hughes, G. W., McInnes, C. R. Solar sail hybrid trajectory optimization for non-Keplerian orbit transfers. Journal of Guidance, Control, and Dynamics, 2002, 25(3): 602-604.
[29]
Mengali, G., Quarta, A. A. Solar sail trajectories with piecewise-constant steering laws. Aerospace Science and Technology, 2009, 13(8): 431-441.
[30]
Wright, J. L. Space Sailing. Philadelphia: Gordon and Breach Science Publishers, 1992: 223.
[31]
Dachwald, B., Macdonald, M., McInnes, C. R., Mengali, G., Quarta, A. A. Impact of optical degradation on solar sail mission performance. Journal of Spacecraft and Rockets, 2007, 44(4): 740-749.
[32]
McInnes, C. R. Solar Sailing: Technology, Dynamics and Mission Applications. London: Springer-Verlag Berlin Heidelberg, 1999: 46-51.
[33]
Wie, B. Thrust vector control analysis and design for solar-sail spacecraft. Journal of Spacecraft and Rockets, 2007, 44(3): 545-557.
[34]
Aliasi, G., Mengali, G., Quarta, A. A. Artificial Lagrange points for solar sail with electrochromic material panels. Journal of Guidance, Control, and Dynamics, 2013, 36(5): 1544-1550.
[35]
Mengali, G., Quarta, A. A. Heliocentric trajectory analysis of sun-pointing smart dust with electrochromic control. Advances in Space Research, 2016, 57(4): 991-1001.
[36]
Ceriotti, M., Harkness, P., McRobb, M. Variable-geometry solar sailing: the possibilities of the quasi-rhombic Pyramid. In: Advances in Solar Sailing. Macdonlald M., Ed. Berlin, Heidelberg: Spring-Verlag Berlin Heidelberg, 2014: 899-919.
[37]
Heiligers, J., Guerrant, D., Lawrence, D. Exploring the Heliogyro’s orbital control capabilities for solar sail halo orbits. Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2569-2586.
[38]
Stengel, R. F. Optimal Control and Estimation. New York: Dover Publications. 1994: 222-254.
[39]
Sauer, C. G. Jr. Optimum solar-sail interplanetary trajectories. In: Proceedings of the Astrodynamics Conference, 1976: 792.
[40]
Lawden, D. F. Optimal Trajectories for Space Navigation. London: Butterworths. 1963: 54-60.
[41]
Mengali, G., Quarta, A. A. Optimal three-dimensional interplanetary rendezvous using non-ideal solar sail. Journal of Guidance, Control, and Dynamics, 2005, 28(1): 173-177.
[42]
Niccolai, L., Quarta, A. A., Mengali, G. Analytical solution of the optimal steering law for non-ideal solar sail. Aerospace Science and Technology, 2017, 62: 11-18.
[43]
Bryson, A. E., Ho, Y. C. Applied Optimal Control. Washington, D. C.: Hemisphere Publishing Corporation. 1975: 71-89.
[44]
Shampine, L. F., Reichelt, M. W. The MATLAB ODE suite. SIAM Journal on Scientific Computing, 1997, 18(1): 1-22.
Astrodynamics
Pages 193-204
Cite this article:
Quarta AA, Mengali G, Bassetto M. Optimal solar sail transfers to circular Earth-synchronous displaced orbits. Astrodynamics, 2020, 4(3): 193-204. https://doi.org/10.1007/s42064-019-0057-x

740

Views

14

Crossref

16

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 16 February 2019
Accepted: 04 May 2019
Published: 02 August 2019
© Tsinghua University Press 2019
Return