AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dynamical behavior of flexible net spacecraft for landing on asteroid

Yu Zhang1Yang Yu2Hexi Baoyin1( )
School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
Show Author Information

Graphical Abstract

Abstract

A new era of up-close asteroid exploration has been entered in the 21st century. However, the widely rugged terrain and microgravity field of asteroids still pose significant challenges to the stable landing of spacecraft and may even directly lead to the escape of the explorer. Owing to the substantial energy dissipation arising from the interaction among multiple bodies, the flexible net, which is a typical multibody system, may be capable of overcoming the above problems. In this study, a dynamical model was established to analyze the movement of the flexible net spacecraft (FNS) near and on the asteroid comprehensively. First, we investigated the dynamical environment of the target asteroid by combining the polyhedron method and spherical harmonics parametric surface modeling approach. Thereafter, we constructed the multibody dynamics model of the explorer using the linear Kelvin-Voigt method. Subsequently, we studied the collision process between the FNS and asteroid based on the spring-damper contact dynamics model. The trajectory and speed of the FNS could be derived by solving the system dynamic equations in parallel. Finally, we analyzed the deformation, descent, jumping motion, and surface movement process of the FNS during the movement. Consequently, a promising scheme is provided for asteroid exploration missions in the future.

References

[1]
Bottke, W. F., Cellino, A., Paolicchi, p., Binzel, R. P. Asteroids III. Tucson: Univ. Arizona Press, 2001: 3-15.
[2]
Castillo-Rogez, J. C., Pavone, M., Nesnas, I. A. D., Hoffman, J. A. Expected science return of spatially-extended in-situ exploration at small solar system bodies. In: Proceedings of the IEEE Aerospace Conference, 2012: 1-15.
[3]
Anthony, N., Emami, M. R. Asteroid engineering: The state-of-the-art of Near-Earth Asteroids science and technology. Progress in Aerospace Sciences, 2018, 100(6): 1-17.
[4]
Feng, J., Hou, X., Armellin, R. Survey on studies about model uncertainties in small body explorations. Progress in Aerospace Sciences, 2019, 110(10): 1-12.
[5]
Normile, D. Asteroid mission faces ‘breathtaking’ touchdown. Science, 2019, 363(6422): 16-17.
[6]
Yoshimitsu, T., Kubota, T., Nakatani, I. M. INERVA rover which became a small artificial solar satellite. In: Proceedings of the 20th Annual AIAA/USU Conference on Small Satellites, 2006: SSC06-IV-4
[7]
Michel, P., O’Brien, D. P., Abe, S., Hirata, N. Itokawa’s cratering record as observed by Hayabusa: Implications for its age and collisional history. Icarus, 2009, 200(2): 503-513.
[8]
Lowry, S. C., Weissman, P. R., Hicks, M. D., Whiteley, R. J., Larson, S. Physical properties of Asteroid (25143) Itokawa—Target of the Hayabusa sample return mission. Icarus, 2005, 176(2): 408-417.
[9]
Abe, S., Mukai, T., Hirata, N., Barnouin-Jha, O. S., Cheng, A. F., Demura, H., Gaskell, R. W., Hashimoto, T., Hiraoka, K., Honda, T. et al. Mass and local topography measurements of Itokawa by Hayabusa. Science, 2006, 312(5778): 1344-1347.
[10]
Lederer S. M., Domingue, D. L., Vilas, F., Abe, M., Farnham, T. L., Jarvis, K. S., Lowry, S. C., Ohba, Y., Weissman, P. R., French, L. M. Physical characteristics of Hayabusa target Asteroid 25143 Itokawa. Icarus, 2005, 173(1): 153-165.
[11]
Kawaguchi, J., Fujiwara, A., Uesugi, T. Hayabusa—Its technology and science accomplishment summary and hayabusa-2. Acta Astronautica, 2008, 62(10-11): 639-647.
[12]
Fujiwara, A., Kawaguchi, J., Yeomans, D. K., Abe, M., Mukai, T., Saito, J., Yano, H., Yoshikawa, M., Scheeres, D. J., Barmouin-Jha, O. et al. The rubble-pile asteroid Itokawa as observed by Hayabusa. Science, 2006, 312(5778): 1330-1344.
[13]
Taylor, M. G. G. T., Altobelli, N., Buratti, B. J., Choukroun, M. The Rosetta mission orbiter science overview: The comet phase. Philosophical Transactions, 2017, 375(2097): 20160262.
[14]
Ulamec, S., Biele, J., Blazquez, A., Cozzoni, B., Delmas, C., Fantinati, C., Gaudon, P., Geurts, K., Jurado, E., Küchemann, O. et al. Rosetta Lande—Philae: Landing preparations. Acta Astronautica, 2015, 107: 79-86.
[15]
Jurado, E., Martin, T., Canalias, E., Blazquez, A., Garmier, R., Ceolin, T., Gaudon, P., Delmas, C., Biele, J., Ulamec, S. et al. Rosetta lander Philae: Flight dynamics analyses for landing site selection and post-landing operations. Acta Astronautica, 2016, 125: 65-79.
[16]
Baranyai, T., Várkonyi, P. L., Balázs, A. Rotational motion of the spacecraft Philae during landing on comet 67P/churyumov-gerasimenko. Journal of Spacecraft and Rockets, 2017, 54(3): 554-565.
[17]
Schröder S. E., Mottola, S., Arnold, G., Grothues, H.-G., Jaumann, R., Keller, H. U., Michaelis, H., Bibring, J.-P., Pelivan, I., Koncz, A. et al. Close-up images of the final Philae landing site on comet 67P/Churyumov-Gerasimenko acquired by the ROLIS camera. Icarus, 2017, 285: 263-274.
[18]
Watanabe, S., Hirabayashi, M., Hirata, N., Noguchi, R., Shimaki, Y., Ikeda, H., Tatsumi, E., Yoshikawa, M., Kikuchi, S., Yabuta, H. et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top-shaped rubble pile. Science, 2019, 364(6437): 268-272.
[19]
Ogawa, N., Terui, F., Mimasu, Y., Yoshikawa, K., Ono, G., Yasuda, S., Matsushima, K., Masuda, T., Hihara, H., Sano, J. et al. Image-based autonomous navigation of Hayabusa2 using artificial landmarks: The design and brief in-flight results of the first landing on asteroid Ryugu. Astrodynamics, 2020, 4(2): 89-103.
[20]
Tsuda, Y., Takeuchi, H., Ogawa, N., Ono, G., Kikuchi, S., Oki, Y., Ishiguro, M., Kuroda, D., Urakawa, S., Okumura, S. I. et al. Rendezvous to asteroid with highly uncertain ephemeris: Hayabusa2’s Ryugu-approach operation result. Astrodynamics, 2020, 4(2): 137-147.
[21]
Morota, T., Sugita, S., Cho, Y., Kanamaru, M., Tatsumi, E., Sakatani, N., Honda, R., Hirata, N., Kikuchi, H., Yamada, M. et al. Sample collection from asteroid (162173) Ryugu by Hayabusa2: Implications for surface evolution. Science, 2020, 368(6491): 654-659.
[22]
Sugita, S., Honda, R., Morota, T., Kameda, S., Sawada, H., Tatsumi, E., Yamada, M., Honda, C., Yokota, Y., Kouyama, T. et al. The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes. Science, 2019, 364(6437): 252.
[23]
Takao, Y., Mimasu, Y., Tsuda, Y. Simultaneous estimation of spacecraft position and asteroid diameter during final approach of Hayabusa2 to Ryugu. Astrodynamics, 2020, 4(2): 163-175.
[24]
Yoshikawa, K., Sawada, H., Kikuchi, S., Ogawa, N., Mimasu, Y., Ono, G., Takei, Y., Terui, F., Saiki, T., Yasuda, S., et al. Modeling and analysis of Hayabusa2 touchdown. Astrodynamics, 2020, 4(2): 119-135.
[25]
Arakawa, M., Saiki, T., Wada, K., Ogawa, K., Kadono, T., Shirai, K., Sawada, H., Ishibashi, K., Honda, R., Sakatani, N. et al. An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime. Science, 2020, 368(6486): 67-71.
[26]
Scheeres, D. J., McMahon, J. W., French, A. S., Brack, D. N., Chesley, S. R., Farnocchia, D., Takahashi, Y., Leonard, J. M., Geeraert, J., Page, B. et al. The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements. Nature Astronomy, 2019, 3(4): 352-361.
[27]
Hamilton, V. E., Simon, A. A., Christensen, P. R., Reuter, B. E., Clark, M. A., Barucci, N. E., Bowles, W. V., Boynton, J. R., Cloutis, E. A. Connolly, K. L. Jr. et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nature Astronomy, 2019, 3(4): 332-340.
[28]
Hergenrother, C. W., Maleszewski, C. K., Nolan, M. C., Li, J.-Y., Droue d’Aubigny, C. Y., Shelly, F. C., Howell, E. S., Kareta, T. R., Izawa, M. R. M., Barucci, M. A. et al. The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations. Nature Communications, 2019, 10(1): 1291.
[29]
Dellagiustina, D. N., Emery, J. P., Golish, D. R., Rozitis, B., Bennett, C. A., Bueke, K. N., Ballouz, R.-L., Becker, K. J., Christensen, P. R. Drouet d’Aubigny, C. Y. et al. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis. Nature Astronomy, 2019, 3(4): 341-351.
[30]
Lauretta, D. S., Bartels, A. E., Barucci, M. A., Bierhaus, E. B., Binzel, R. P., Bottke, W. F., Campins, H., Chesley, S. R., Clark, B. C., Clark, B. E. et al. The OSIRIS-REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations. Meteoritics & Planetary Science, 2014, 50(4): 834-849.
[31]
Lauretta, D. S., Dellagiustina, D. N., Bennett, C. A., Golish, D. R., Becker, K. J., Balram-Knutson, S. S., Barnouin, O. S., Becker, T. L., Bottke, W. F., Boynton, W. V. et al. The unexpected surface of asteroid (101955) Bennu. Nature, 2019, 568(7750): 55-60.
[32]
Lauretta, D. S., Hergenrother, C. W., Chesley, S. R., Leonard, J. M., Pelgrift, J. Y., Adam, C. D., Al Asad, M., Antreasian, P. G., Ballouz, R. L., Becker, K. J. et al. Episodes of particle ejection from the surface of the active asteroid (101955) Bennu. Science, 2019, 366(6470): eaay3544.
[33]
Shan, M., Guo, J., Gill, E. Contact dynamic models of space debris capturing using a net. Acta Astronautica, 2019, 158: 198-205.
[34]
Zhao, Y., Huang, P., Zhang, F., Meng, Z. Contact dynamics and control for tethered space net robot. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 918-929.
[35]
Liu, Y., Huang, P., Zhang, F., Zhao, Y. Robust distributed consensus for deployment of Tethered Space Net Robot. Aerospace Science and Technology, 2018, 77: 524-533.
[36]
Scheeres, D. J. Orbital mechanics about small bodies. Acta Astronautica, 2012, 72: 1-14.
[37]
Hamilton, D. P., Burns, J. A. Orbital stability zones about asteroids: II. The destabilizing effects of eccentric orbits and of solar radiation. Icarus, 1991, 96: 43-64.
[38]
Werner, R. A. The gravitational potential of a homogeneous polyhedron or don’t cut corners. Celestial Mechanics and Dynamical Astronomy, 1994, 59(3): 253-278.
[39]
Yu, Y., Michel, P., Hirabayashi, M., Schwartz, S. R., Zhang, Y., Richardson, D. C., Liu, X. The dynamical complexity of surface mass shedding from a top-shaped asteroid near the critical spin limit. Astronomical Journal, 2018, 156(2): 59.
[40]
Botta, E. M., Sharf, I., Misra, A. K., Teichmann, M. On the simulation of tether-nets for space debris capture with Vortex Dynamics. Acta Astronautica, 2016, 123: 91-102. .
Astrodynamics
Pages 249-261
Cite this article:
Zhang Y, Yu Y, Baoyin H. Dynamical behavior of flexible net spacecraft for landing on asteroid. Astrodynamics, 2021, 5(3): 249-261. https://doi.org/10.1007/s42064-021-0102-4

707

Views

17

Crossref

23

Web of Science

23

Scopus

2

CSCD

Altmetrics

Received: 25 October 2020
Accepted: 31 January 2021
Published: 01 March 2021
© Tsinghua University Press 2021
Return