AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Trajectory optimization for the Horyu-VI international lunar mission

Federico De Grossi1( )Paolo Marzioli1Mengu Cho2Fabio Santoni1Christian Circi1
Sapienza University of Rome, 00138 Rome, Italy
Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
Show Author Information

Graphical Abstract

Abstract

The Horyu-VI nano-satellite is an international lunar mission with the purpose of studying the lunar horizon glow (LHG)—a still unclear phenomenon caused by electrostatically charged lunar dust particles. This study analyzes the mission trajectory with the hypothesis that it is launched as a secondary payload of the NASA ARTEMIS-II mission. In particular, the effect of the solar gravity gradient is studied; in fact, depending on the starting relative position of the Moon, the Earth, and the Sun, the solar gradient acts differently on the trajectory—changing it significantly. Therefore, the transfer and lunar capture problem is solved in several cases with the initial Sun-Earth-Moon angle as the key parameter. Furthermore, the inclination with respect to the Moon at capture is constrained to be equatorial. Finally, the problem of stabilization and circularization of the lunar orbit is addressed in a specific case, providing an estimate of the total propellant cost to reach the final orbit around the Moon.

References

[1]
Örger, N. C., Cho, M., Iskender, O. B., Lim, W. S., Chandran, A., Ling, K. V., Holden, K. H., Chow, C. L., Bellardo, J., Faure, P., et al. Horyu-VI: International CubeSat mission to investigate lunar horizon glow. In: Proceedings of the 71st International Astronautical Congress, 2020: IAC-20,B4,2,7,x55547.
[2]
Barker, M. K., Mazarico, E., McClanahan, T. P., Sun, X., Neumann, G. A., Smith, D. E., Zuber, M. T., Head, J. W. Searching for lunar horizon glow with the lunar orbiter laser altimeter. Journal of Geophysical Research: Planets, 2019, 124(11): 2728-2744.
[3]
Colwell, J. E., Batiste, S., Horanyi, M., Robertson, S., Sture, S. Lunar surface: Dust dynamics and regolith mechanics. Reviews of Geophysics, 2007, 45(2): 2005RG000184.
[4]
Criswell, D. R. Horizon-glow and the motion of lunar dust. In: Photon and Particle Interactions with Surfaces in Space. Grard, R. J. L. Ed. Dordrecht: Springer, 1973: 545-556.
[5]
Feldman, P. D., Glenar, D. A., Stubbs, T. J., Retherford, K. D., Randall Gladstone, G., Miles, P. F., Greathouse, T. K., Kaufmann, D. E., Parker, J. W., Alan Stern, S. Upper limits for a lunar dust exosphere from far-ultraviolet spectroscopy by LRO/LAMP. Icarus, 2014, 233: 106-113.
[6]
Glenar, D. A., Stubbs, T. J., Hahn, J. M., Wang, Y. Search for a high-altitude lunar dust exosphere using clementine navigational star tracker measurements. Journal of Geophysical Research: Planets, 2014, 119(12): 2548-2567.
[7]
Glenar, D. A., Stubbs, T. J., McCoy, J. E., Vondrak, R. R. A reanalysis of the apollo light scattering observations, and implications for lunar exospheric dust. Planetary and Space Science, 2011, 59(14): 1695-1707.
[8]
McCoy, J. E. Photometric studies of light scattering above the lunar terminator from apollo solar corona photography. In: Proceedings of the Lunar and Planetary Science Conference, 1976, 7: 1087-1112.
[9]
McCoy, J. E., Criswell, D. R. Evidence for a high altitude distribution of lunar dust. In: Proceedings of Lunar and Planetary Science Conference, 1974, 5: 2991-3005.
[10]
Rennilson, J. J., Criswell, D. R. Surveyor observations of lunar horizon-glow. The Moon, 1974, 10(2): 121-142.
[11]
Severny, A. B., Terez, E. I., Zvereva, A. M. The measurements of sky brightness on lunokhod-2. The Moon, 1975, 14(1): 123-128.
[12]
Zook, H. A., McCoy, J. E. Large scale lunar horizon glow and a high altitude lunar dust exosphere. Geophysical Research Letters, 1991, 18(11): 2117-2120.
[13]
Gaier, J. R. The effects of lunar dust on EVA systems during the Apollo missions. Report No. E-15071. NASA Glenn Research Center, Cleveland OH, 2005.
[14]
Harris, R. S. Jr. Apollo experience report: Thermal design of Apollo lunar surface experiments package. Report No. TN D-6738. National Aeronautics and Space Administration, WDC, 1972.
[15]
James, J. T., Lam, C. W., Quan, C., Wallace, W. T., Taylor, L. Pulmonary toxicity of lunar highland dust. SAE Technical Paper 2009-01-2379, 2009, .
[16]
Linnarsson, D., Carpenter, J., Fubini, B., Gerde, P., Karlsson, L. L, Loftus, D. J., Prisk, G. K., Staufer, U., Tranfield, E. M., van Westrenen, W. Toxicity of lunar dust. Planetary and Space Science, 2012, 74(1): 57-71.
[17]
O’Brien, B. J. Review of measurements of dust movements on the Moon during Apollo. Planetary and Space Science, 2011, 59(14): 1708-1726.
[18]
O’Brien, B. J. Paradigm shifts about dust on the Moon: From Apollo 11 to Chang’e-4. Planetary and Space Science, 2018, 156: 47-56.
[19]
Niccolai, L., Bassetto, M., Quarta, A., Mengali, G. A review of Smart Dust architecture, dynamics, and mission application. Progress in Aerospace Sciences, 2019, 106: 1-14.
[20]
Smith, D. A. Space Launch System (SLS) Mission Planner’s Guide. NASA M19-7163, 2018.
[21]
Del Monte, M., Meis, R., Circi, C. Optimization of interplanetary trajectories using the colliding bodies optimization algorithm. International Journal of Aerospace Engineering, 2020, 2020: 9437378.
[22]
Belbruno, E., Miller, J. Sun-perturbed Earth-to-Moon transfers with ballistic capture. Journal of Guidance, Control, and Dynamics, 1993, 16: 770-775.
[23]
Kawaguchi, J., Yamakawa, H., Uesugi, T., Matsuo, H. On making use of lunar and solar gravity assist for Lunar A and planet B missions. Acta Astronautica, 1995, 35: 633-642.
[24]
Romagnoli, D., Circi, C. Earth-Moon weak stability boundaries in the restricted three and four body problem. Celestial Mechanics and Dynamical Astronomy, 2009, 103(1): 79-103.
Astrodynamics
Pages 263-278
Cite this article:
De Grossi F, Marzioli P, Cho M, et al. Trajectory optimization for the Horyu-VI international lunar mission. Astrodynamics, 2021, 5(3): 263-278. https://doi.org/10.1007/s42064-021-0105-1

1217

Views

55

Downloads

6

Crossref

8

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 30 April 2021
Accepted: 02 July 2021
Published: 29 August 2021
© The Author(s) 2021

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return