AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Timeline Club: An optimization algorithm for solving multiple debris removal missions of the time-dependent traveling salesman problem model

School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
Show Author Information

Graphical Abstract

Abstract

With the increase of space debris, space debris removal has gradually become a major issue to address by worldwide space agencies. Multiple debris removal missions, in which multiple debris objects are removed in a single mission, are an economical approach to purify the space environment. Such missions can be considered typical time-dependent traveling salesman problems (TDTSPs). In this study, an intelligent global optimization algorithm called Timeline Club Optimization (TCO) is proposed to solve multiple debris removal missions of the TDTSP model. TCO adopts the traditional ant colony optimization (ACO) framework and replaces the pheromone matrix of the ACO with a new structure called the Timeline Club. The Timeline Club records which debris object to be removed next at a certain moment from elitist solutions and decides the probability criterion to generate debris sequences in new solutions. Two hypothetical scenarios, the Iridium-33 mission and the GTOC9 mission, are considered in this study. Simulation results show that TCO offers better performance than those of beam search, ant colony optimization, and the genetic algorithm in multiple debris removal missions of the TDTSP model.

References

1

Kessler, D. J., Cour-Palais, B. G. Collision frequency of artificial satellites: The creation of a debris belt. Journal of Geophysical Research: Space Physics, 1978, 83(A6): 2637-2646.

2
Kessler, D. J., Johnson, N. L., Liou, J. C., Matney, M. The Kessler Syndrome: Implications to future space operations. In: Proceedings of the 33rd Annual AAS Rocky Mountain Guidance and Control Conference, 2010: AAS 10-016.
3
Barbee, B. W., Alfano, S., Piñon, E., Gold, K., Gaylor, D. Design of spacecraft missions to remove multiple orbital debris objects. In: Proceedings of the 2011 Aerospace Conference, 2011: 1-14.https://doi.org/10.1109/AERO.2011.5747303
4

Liou, J. C., Johnson, N. L. Instability of the present LEO satellite populations. Advances in Space Research, 2008, 41(7): 1046-1053.

5

Uriot, T., Izzo, D., Sim˜oes, L. F., Abay, R., Einecke, N., Rebhan, S., Martinez-Heras, J., Letizia, F., Siminski, J., Merz, K. Spacecraft collision avoidance challenge: Design and results of a machine learning competition. Astrodynamics, 2022, 6(2): 121–140.

6

Liou, J. C., Johnson, N. L., Hill, N. M. Controlling the growth of future LEO debris populations with active debris removal. Acta Astronautica, 2010, 66(5-6): 648-653.

7

Houpert, A. A space based radar on a micro-satellite for in situ detection of small orbital debris. Acta Astronautica, 1999, 44(7-12): 313-321.

8

Zhao, H. P., Fu, X. J., Gao, M. G., Ding, S. Research on the visibility of low-orbit debris using space-borne radar. IET Radar, Sonar & Navigation, 2015, 9(1): 31-37.

9

Culp, R. D., Gravseth, I. J. Space-debris identification using optical calibration of common spacecraft materials. Journal of Spacecraft and Rockets, 1996, 33(2): 262-266.

10

Shan, M. H., Guo, J., Gill, E. Review and comparison of active space debris capturing and removal methods. Progress in Aerospace Sciences, 2016, 80: 18-32.

11

Ishige, Y., Kawamoto, S., Kibe, S. Study on electro-dynamic tether system for space debris removal. Acta Astronautica, 2004, 55(11): 917-929.

12

Zhong, R., Zhu, Z. H. Dynamics of nanosatellite deorbit by bare electrodynamic tether in low earth orbit. Journal of Spacecraft and Rockets, 2013, 50(3): 691-700.

13

Borja, J. A., Tun, D. Deorbit process using solar radiation force. Journal of Spacecraft and Rockets, 2006, 43(3): 685-687.

14

Phipps, C. R., Albrecht, G., Friedman, H., Gavel, D., George, E. V., Murray, J., Ho, C., Priedhorsky, W., Michaelis, M. M., Reilly, J. P. ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser. Laser and Particle Beams, 1996, 14(1): 1-44.

15

Phipps, C. R. A laser-optical system to re-enter or lower low Earth orbit space debris. Acta Astronautica, 2014, 93: 418-429.

16

Zhao, S. G., Zhang, J. R., Xiang, K. H., Qi, R. Target sequence optimization for multiple debris rendezvous using low thrust based on characteristics of SSO. Astrodynamics, 2017, 1(1): 85-99.

17
Cook, W. J. In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, 2012.
18
Federici, L., Zavoli, A., Colasurdo, G. A time-dependent TSP formulation for the design of an active debris removal mission using simulated annealing. 2019: arXiv: 1909.10427[math. OC]. Available at https://arxiv.org/abs/1909.10427.
19

Cerf, M. Multiple space debris collecting mission—Debris selection and trajectory optimization. Journal of Optimization Theory and Applications, 2013, 156(3): 761-796.

20
Zuiani, F., Vasile, M. Preliminary design of debris removal missions by means of simplified models for low-thrust, many-revolution transfers. 2012: arXiv: 1207.3749[math. OC]. Available at https://arxiv.org/abs/1207.3749. https://doi.org/10.1155/2012/836250
21

Braun, V., Lüpken, A., Flegel, S., Gelhaus, J., Möckel, M., Kebschull, C., Wiedemann, C., Vörsmann, P. Active debris removal of multiple priority targets. Advances in Space Research, 2013, 51(9): 1638-1648.

22

Li, H. Y., Chen, S. Y., Baoyin, H. X. J2-perturbed multitarget rendezvous optimization with low thrust. Journal of Guidance, Control, and Dynamics, 2017, 41(3): 802-808.

23

Olympio, J. T., Frouvelle, N. Space debris selection and optimal guidance for removal in the SSO with low-thrust propulsion. Acta Astronautica, 2014, 99: 263-275.

24

Barea, A., Urrutxua, H., Cadarso, L. Large-scale object selection and trajectory planning for multi-target space debris removal missions. Acta Astronautica, 2020, 170: 289-301.

25

Madakat, D., Morio, J., Vanderpooten, D. Biobjective planning of an active debris removal mission. Acta Astronautica, 2013, 84: 182-188.

26

Bérend, N., Olive, X. Bi-objective optimization of a multiple-target active debris removal mission. Acta Astronautica, 2016, 122: 324-335.

27

Stuart, J., Howell, K., Wilson, R. Application of multi-agent coordination methods to the design of space debris mitigation tours. Advances in Space Research, 2016, 57(8): 1680-1697.

28

Shen, H. X., Zhang, T. J., Casalino, L., Pastrone, D. Optimization of active debris removal missions with multiple targets. Journal of Spacecraft and Rockets, 2017, 55(1): 181-189.

29

Missel, J., Mortari, D. Path optimization for space sweeper with sling-sat: A method of active space debris removal. Advances in Space Research, 2013, 52(7): 1339-1348.

30
Izzo, D., Getzner, I., Hennes, D., Simoes, L. F. Evolving solutions to TSP variants for active space debris removal. In: Proceedings of the Genetic and Evolutionary Computation Conference, 2015: 1207-1214.https://doi.org/10.1145/2739480.2754727
31

Jing, Y., Chen, X. Q., Chen, L. H. Biobjective planning of GEO debris removal mission with multiple servicing spacecrafts. Acta Astronautica, 2014, 105(1): 311-320.

32

Daneshjou, K., Mohammadi-Dehabadi, A. A., Bakhtiari, M. Mission planning for on-orbit servicing through multiple servicing satellites: A new approach. Advances in Space Research, 2017, 60(6): 1148-1162.

33

Di Carlo, M., Romero Martin, J. M., Vasile, M. Automatic trajectory planning for low-thrust active removal mission in low-earth orbit. Advances in Space Research, 2017, 59(5): 1234-1258.

34

Dorigo, M., Maniezzo, V., Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part B, Cybernetics, 1996, 26(1): 29-41.

35

Dorigo, M., Gambardella, L. M. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.

36
Holland, J. H. Adaption in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. The MIT Press, 1975.
37
Kanazaki, M., Yamada, Y., Nakamiya, M. Trajectory optimization of a satellite for multiple active space debris removal based on a method for the traveling serviceman problem. In: Proceedings of the 21st Asia Pacific Symposium on Intelligent and Evolutionary Systems, 2017: 61-66.https://doi.org/10.1109/IESYS.2017.8233562
38

Liu, Y., Yang, J. N., Wang, Y. Z., Pan, Q., Yuan, J. P. Multi-objective optimal preliminary planning of multi-debris active removal mission in LEO. Science China Information Sciences, 2017, 60(7): 1-10.

39

Chen, Y., Bai, Y. Z., Zhao, Y., Wang, Y., Chen, X. Q. Optimal mission planning of active space debris removal based on genetic algorithm. IOP Conference Series: Materials Science and Engineering, 2020, 715: 012025.

40

Li, H. Y., Baoyin, H. X. Optimization of multiple debris removal missions using an evolving elitist club algorithm. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 773-784.

41

Alfriend, K. T., Lee, D. J., Creamer, N. G. Optimal servicing of geosynchronous satellites. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 203-206.

42

Shen, H. X., Casalino, L. Simple ΔV approximation for optimization of debris-to-debris transfers. Journal of Spacecraft and Rockets, 2020, 58(2): 575-580.

43
Melgarejo, P. A., Laborie, P., Solnon, C. A time-dependent no-overlap constraint: Application to urban delivery problems. In: Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2015. Lecture Notes in Computer Science, Vol. 9075. Michel, L. Ed. Springer, Cham, 2015: 1-17.https://doi.org/10.1007/978-3-319-18008-3_1
44

Balakrishnan, N., Lucena, A., Wong, R. T. Scheduling examinations to reduce second-order conflicts. Computers & Operations Research, 1992, 19(5): 353-361.

45

Miranda-Bront, J. J., Méndez-Díaz, I., Zabala, P. Facets and valid inequalities for the time-dependent travelling salesman problem. European Journal of Operational Research, 2014, 236(3): 891-902.

46
Ban, H. B. The hybridization of ACO + GA and RVNS algorithm for solving the time-dependent traveling salesman problem. Evolutionary Intelligence, 2020: 1-20.https://doi.org/10.1007/s12065-020-00510-9
47
Izzo, D. Problem description for the 9th Global Trajectory Optimisation Competition. Technical Report. Advanced Concepts Team, European Space Agency, Netherlands, Noordwijk AZ, 2017.
48

Petropoulos, A., Grebow, D., Jones, D., Lantoine, G., Nicholas, A., Roa, J., Senent, J., Stuart, J., Arora, N., Pavlak, T., et al. GTOC9: Methods and results from the Jet Propulsion Laboratory team. Acta Futura, 2018, 11: 25-35.

Astrodynamics
Pages 219-234
Cite this article:
Zhang N, Zhang Z, Baoyin H. Timeline Club: An optimization algorithm for solving multiple debris removal missions of the time-dependent traveling salesman problem model. Astrodynamics, 2022, 6(2): 219-234. https://doi.org/10.1007/s42064-021-0107-z

738

Views

17

Crossref

20

Web of Science

21

Scopus

1

CSCD

Altmetrics

Received: 07 July 2021
Accepted: 12 July 2021
Published: 25 September 2021
© Tsinghua University Press 2021
Return