PDF (2.6 MB)
Collect
Submit Manuscript
Research Article | Open Access

Powered-descent landing GNC system design and flight results for Tianwen-1 mission

Xiangyu Huang1,2Chao Xu1,2Jinchang Hu1,2Maodeng Li1,2Minwen Guo1,2Xiaolei Wang1Yu Zhao1Baocheng Hua1Yunpeng Wang1
Beijing Institute of Control Engineering, Beijing, 100094, China
National Key Laboratory of Science and Technology on Space Intelligent Control, Beijing, 100094, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The powered-descent landing (PDL) phase of the Tianwen-1 mission began with composite backshell—parachute (CBP) separation and ended with landing-rover touchdown. The main tasks of this phase were to reduce the velocity of the lander, perform the avoidance maneuver, and guarantee a soft touchdown. The PDL phase overcame many challenges: performing the divert maneuver to avoid collision with the CBP while simultaneously avoiding large-scale hazards; slowing the descent from approximately 95 to 0 m/s; performing the precise hazard-avoidance maneuver; and placing the lander gently and safely on the surface of Mars. The architecture and algorithms of the guidance, navigation, and control system for the PDL phase were designed; its execution resulted in Tianwen-1's successful touchdown in the morning of 15 May 2021. Consequently, the Tianwen-1 mission achieved a historic autonomous landing with simultaneous hazard and CBP avoidance.

References

1

Wang, D., Huang, X., Guan, Y. GNC system scheme for lunar soft landing spacecraft. Advances in Space Research, 2008, 42(2): 379–385.

2
Busnardo, D. M., Aitken, M. L., Tolson, R. H., Pierrottet, D., Amzajerdian, F. LIDAR-aided inertial navigation with extended Kalman filtering for pinpoint landing over rough terrain. In: Proceedings of the 49th AIAA Aerospace Science Meeting including the New Horizons Forum And Aerospace Exposition, 2011: AIAA 2011-428.https://doi.org/10.2514/6.2011-428
3

Xu, C., Wang, D., Huang, X. Landmark-based autonomous navigation for pinpoint planetary landing. Advance in Space Research, 2016, 58(11): 2313–2327.

4

Xu, C., Wang, D., Huang, X. Autonomous navigation based on sequential images for planetary landing in unknown environments. Journal of Guidance, Control, and Dynamics, 2017, 40(10): 2587–2602.

5
Owens, C., Macdonald, K., Hardy, J., Lindsay, R., Redfield, M., Bloom, M., Bailey, E., Cheng, Y., Clouse, D., Villalpando, C. Y., et al. Development of a signature-based terrain relative navigation system for precision landing. In: Proceedings of the AIAA Scitech 2021 Forum, 2021: AIAA 2021-0376.https://doi.org/10.2514/6.2021-0376
6
Fahroo, F., Ross, I. M. Trajectory optimization by indirect spectral collocation methods. In: Proceedings of the Astrodynamics Specialist Conference, 2000: AIAA 2000-4028.https://doi.org/10.2514/6.2000-4028
7

Acikmese, B., Carson, J. M., Blackmore, L. Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem. IEEE Transactions on Control Systems Technology, 2013, 21(6): 2104–2113.

8
Ploen, S., Acikmese, B., Wolf, A. A comparison of powered descent guidance laws for mars pinpoint landing. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2006: AIAA 2006-6676.https://doi.org/10.2514/6.2006-6676
9
Martella, P., Buonocore, M., Canuto, E., Molano-Jimenez, A., Drai, R., Lorenzoni, L. Design and verification of the GNC for the European ExoMars EDL deomonstrator. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, 2011: AIAA 2011-6341.https://doi.org/10.2514/6.2011-6341
10

Sell, S. W., Davis, J. L., Martin, A. M. S., Serricchio, F. Powered fight design and performance summary for the Mars Science Laboratory mission. Journal of Spacecraft and Rockets, 2014, 51(4): 1197–1207.

11
San Martin, A. M., Lee, S. W., Wong, E. C. The development of the MSL guidance, navigation, and control system for entry, descent, and landing. In: Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, 2013: 529–546.
12

Zhang, H. H., Liang, J., Huang, X. Y., Zhao, Y., Wang, L., Guan, Y. F., Cheng, M., Li, J., Wang, P. J., Yu, J., et al. Autonomous hazard avoidance control for Chang'e-3 soft landing. SCIENTIA SINICA Technologica, 2014, 44(6): 559–568. (in Chinese)

13

Huang, X. Y., Zhang, H. H., Wang, D. Y., Li, J., Guan, Y. F., Wang, P. J. Autonomous navigation and guidance for Chang'e-3 soft landing. Journal of Deep Space Exploration, 2014, 1(1): 52–59. (in Chinese)

14

Wang, D. Y., Li, J., Huang, X. Y., Zhang, H. H. A pinpoint autonomous navigation and hazard avoidance method for lunar soft landing. Journal of Deep Space Exploration, 2014, 1(1): 44–51. (in Chinese)

15

Zhang, H. H., Guang, Y. F., Cheng, M., Li, J., Yu, P., Zhang, X. W., Wang, H. Q., Yang, W., Wang, Z. W., Yu, J., et al. Guidance navigation and control of Chang'e-4 lander. SCIENTIA SINICA Technologica, 2019, 49(12): 1418–1428. (in Chinese)

16

Yu, P., Zhang, H. H., Li, J., Guan, Y. F., Wang, L., Zhao, Y., Chen, Y., Yang, W., Yu, J., Wang, H. Q., et al. Design and implementation of GNC system of lander and ascender module of Chang'e-5 spacecraft. SCIENTIA SINICA Technologica, 2021, 51(7): 763–777. (in Chinese)

17

Zhang, H. H., Li, J., Guan, Y. F., Huang, X. Y. Autonomous navigation for powered descent phase of Chang'e-3 lunar lander. Control Theory & Applications, 2014, 31(12): 1686–1694. (in Chinese)

18

Huang, X. Y., Li, M. D., Wang, X. L., Hu, J. C., Zhao, Y., Guo, M. W., Xu, C., Liu, W. W., Wang, Y. P., Hao, C., Xu, L. J. The Tianwen-1 guidance, navigation, and control for Mars entry, descent, and landing. Space: Science & Technology, 2021, 2021: 9846185.

19

Zhang, H. H., Guan, Y. F., Hu, J. C., Wang, Z. G. A novel attitude control strategy based on quaternion partition. Acta Automatica Sinica, 2015, 41(7): 1341–1349. (in Chinese)

20

Wang, Z., Li, T. S., Wang, D. Y. Attitude control during lunar satellite orbit maneuver. Aerospace Control, 2005, 23(1): 11–14. (in Chinese)

21

Hu, J. C., Huang, X. Y., Li, M. D., Guo, M. W., Xu, C., Zhao, Y., Liu, W. W., Wang, X. L. Entry vehicle control system design for the Tianwen-1 mission. Astrodynamics, 2022, 6(1): 27–37.

22

Xu, C., Huang, X. Y., Guo, M. W., Li, M. D., Hu, J. C., Wang, X. L. End-to-end Mars entry, descent, and landing modeling and simulations for the Tianwen-1 guidance, navigation, and control system. Astrodynamics, 2022, 6(1): 53–67.

Astrodynamics
Pages 3-16
Cite this article:
Huang X, Xu C, Hu J, et al. Powered-descent landing GNC system design and flight results for Tianwen-1 mission. Astrodynamics, 2022, 6(1): 3-16. https://doi.org/10.1007/s42064-021-0118-9
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return