AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

A review of space-object collision probability computation methods

College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Missions, Changsha, 410073, China
Show Author Information

Graphical Abstract

Abstract

The collision probability computation of space objects plays an important role in space situational awareness, particularly for conjunction assessment and collision avoidance. Early works mainly relied on Monte Carlo simulations to predict collision probabilities. Although such simulations are accurate when a large number of samples are used, these methods are perceived as computationally intensive, which limits their application in practice. To overcome this limitation, many approximation methods have been developed over the past three decades. This paper presents a comprehensive review of existing space-object collision probability computation methods. The advantages and limitations of different methods are analyzed and a systematic comparison is presented. Advice regarding how to select a suitable method for different short-term encounter scenarios is then provided. Additionally, potential future research avenues are discussed.

References

1

Luo, Y. Z., Yang, Z. A review of uncertainty propagation in orbital mechanics. Progress in Aerospace Sciences, 2017, 89: 23–39.

2

Liou, J. C. Collision activities in the future orbital debris environment. Advances in Space Research, 2006, 38(9): 2102–2106.

3
Flohrer, T., Krag, H., Klinkrad, H. Assessment and categorization of TLE orbit errors for the US SSN catalogue. In: Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2008.
4
Hoots, F., Starchville, T. Debris risk assessment process. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2008: AIAA 2008–6269.https://doi.org/10.2514/6.2008-6269
5
Liou, J. C., Anilkumar, A. K., Bastida, B., Hanada, T., Sharma, R. K. Stability of the future LEO environment. In: Proceedings of the European Conference on Space Debris, 2013.
6

Letizia, F., Colombo, C., Lewis, H. G. Collision probability due to space debris clouds through a continuum approach. Journal of Guidance, Control, and Dynamics, 2015, 39(10): 2240–2249.

7

Kessler, D. J., Cour-Palais, B. G. Collision frequency of artificial satellites: The creation of a debris belt. Journal of Geophysical Research Space Physics, 1978, 83(A6): 2637–2646.

8

Levin, G. M., Hauck, F. H., Shawcross, P. J., Christiansen, E. L. Protecting the space shuttle from meteoroids and orbital debris. Space Debris, 2000: 231–237.

9

Bérend, N. Estimation of the probability of collision between two catalogued orbiting objects. Advances in Space Research, 1999, 23(1): 243–247.

10

Jenkin, A. B. Effect of orbit data quality on the feasibility of collision risk management. Journal of Spacecraft and Rockets, 2004, 41(4): 677–683.

11

Hechler, M., van der Ha, J. C. Probability of collisions in the geostationary ring. Journal of Spacecraft and Rockets, 1981, 18(4): 361–366.

12

Takahashi, K. Collision between satellites in stationary orbits. IEEE Transactions on Aerospace and Electronic Systems, 1981, AES-17(4): 591–596.

13

Chobotov, V. A. Classification of orbits with regard to collision hazard in space. Journal of Spacecraft and Rockets, 1983, 20(5): 484–490.

14

Kessler, D. J. Orbital debris issues. Advances in Space Research, 1985, 5(2): 3–10.

15

McKnight, D. S., Anz-Meador, P. D. Historical growth of quantities affecting on-orbit collision hazard. Journal of Spacecraft and Rockets, 1993, 30(1): 120–124.

16
Khutorovsky, Z., Boikov, V., Kamensky, S. Direct method for the analysis of collision probability of artificial space objects in LEO: Techniques, methods and applications. In: Proceedings of the European Conference on Space Debris European Space Agency, 1993: 491–499.
17

Uriot, T., Izzo, D., Simões, L. F., Abay, R., Einecke, N., Rebhan, S., Martinez-Heras, J., Letizia, F., Siminski, J., Merz, K. Spacecraft collision avoidance challenge: Design and results of a machine learning competition. Astrodynamics, 2021, 6(2): 121–140.

18

Akella, M. R., Alfriend, K. T. Probability of collision between space objects. Journal of Guidance, Control, and Dynamics, 2000, 23(5): 769–772.

19

Patera, R. P. General method for calculating satellite collision probability. Journal of Guidance, Control, and Dynamics, 2001, 24(4): 716–722.

20

Alfano, S. A numerical implementation of spherical object collision probability. The Journal of the Astronautical Sciences, 2005, 53(1): 103–109.

21

Chan, K. F. Spacecraft Collision Probability. El Segundo, USA: The Aerospace Press, 2008.

22
Coppola, V. T. Including velocity uncertainty in the probability of collision between space objects. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2012.
23
Dolado, J. C., Legendre, P., Garmier, R., Revelin, B., Pena, X. Satellite collision probability computation for long term encounters. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, 2011.
24

Yang, C. H., Zhang, H. Formation flight design for a LISA-like gravitational wave observatory via Cascade optimization. Astrodynamics, 2019, 3(2): 155–171.

25
Chan, K. F. Short-term vs. long-term spacecraft encounters. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2004: AIAA 2004–5460.https://doi.org/10.2514/6.2004-5460
26

Alfriend, K. T., Akella, M. R., Frisbee, J., Foster, J. L., Lee, D. J., Wilkins, M. Probability of collision error analysis. Space Debris, 1999, 1(1): 21–35.

27

Alfano, S. Review of conjunction probability methods for short-term encounters. Advances in the Astronautical Sciences, 2007, 127: 719–746.

28

Patera, R. P. Space vehicle conflict probability for ellipsoidal conflict volumes. Journal of Guidance, Control, and Dynamics, 2007, 30(6): 1819–1822.

29

Patera, R. P. Satellite collision probability for nonlinear relative motion. Journal of Guidance, Control, and Dynamics, 2003, 26(5): 728–733.

30

Dolado-Perez, J. C., Pardini, C., Anselmo, L. Review of uncertainty sources affecting the long-term predictions of space debris evolutionary models. Acta Astronautica, 2015, 113: 51–65.

31

Yang, Z., Luo, Y. Z., Zhang, J. Nonlinear semi-analytical uncertainty propagation of trajectory under impulsive maneuvers. Astrodynamics, 2019, 3(1): 61–77.

32
Carpenter, J. R., Markley, F. L., Alfriend, K. T., Wright, C., Arcido, J. Sequential probability ratio test for collision avoidance maneuver decisions based on a bank of norm-inequality-constrained epoch-state filters. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2011: AAS 11–437.
33
Chan, K. F. International space station collision probability. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2008.https://doi.org/10.2514/6.2008-6774
34

Alfano, S. Satellite conjunction Monte Carlo analysis. Advances in the Astronautical Sciences, 2009, 134: 2007–2024.

35
De Vries, W. H., Phillion, D. W. Monte Carlo method for collision probability using 3D satellite models. In: Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2010.
36

Sabol, C., Binz, C., Segerman, A., Roe, K., Schumacher, P. W. Probability of collision with special perturbations dynamics using the Monte Carlo method. Advances in the Astronautical Sciences, 2012, 142: 1081–1093.

37
Grande-Olalla, I., Sanchez-Ortiz, N., Pulido, J. A., Merz, K. Collision risk assessment and avoidance maneuvers: New tools CORAM for ESA. In: Proceedings of the 6th European Conference on Space Debris, 2013.
38

Yang, C., Kumar, M. An adaptive Monte Carlo method for uncertainty forecasting in perturbed two-body dynamics. Acta Astronautica, 2019, 155: 369–378.

39

Binder, K., Heermann, D., Roelofs, L., Mallinckrodt, A. J., McKay, S. Monte Carlo simulation in statistical physics. Computers in Physics, 1993, 7(2): 156–157.

40

Dagum, P., Karp, R., Luby, M., Ross, S. An optimal algorithm for Monte Carlo estimation. SIAM Journal on Computing, 2000, 29(5): 1484–1496.

41
Dolado, J. C., Legendre, P., Garmier, R., Revelin, B., Pena, X. Satellite collision probability computation for long term encounters. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, 2012: 275–294.
42
Pastel, R. Estimating satellite versus debris collision probability via the adaptive splitting technique. In: Proceedings of the 3rd International Conference on Computer Modeling and Simulation, 2011.
43

Jones, B. A., Doostan, A. Satellite collision probability estimation using polynomial chaos expansions. Advances in Space Research, 2013, 52(11): 1860–1875.

44
Jones, B. A., Doostan, A., Born, G. Conjunction assessment using polynomial chaos expansions. In: Proceedings of the 23rd International Symposium and Space Flight Dynamics: JPL, 2012.
45
Ghrist, R., Plakalovic, D. Impact of non-Gaussian error volumes on conjunction assessment risk analysis. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, 2012: AIAA 2012–4965.https://doi.org/10.2514/6.2012-4965
46

Armellin, R., Morselli, A., di Lizia, P., Lavagna, M. Rigorous computation of orbital conjunctions. Advances in Space Research, 2012, 50(5): 527–538.

47

Morselli, A., Armellin, R., di Lizia, P., Bernelli Zazzera, F. A high order method for orbital conjunctions analysis: Monte Carlo collision probability computation. Advances in Space Research, 2015, 55(1): 311–333.

48

Morselli, A., Armellin, R., di Lizia, P., Bernelli Zazzera, F. A high order method for orbital conjunctions analysis: Sensitivity to initial uncertainties. Advances in Space Research, 2014, 53(3): 490–508.

49

Vittaldev, V., Russell, R. P. Space object collision probability via Monte Carlo on the graphics processing unit. The Journal of the Astronautical Sciences, 2017, 64(3): 285–309.

50

Jones, B. A., Parrish, N., Doostan, A. Postmaneuver collision probability estimation using sparse polynomial chaos expansions. Journal of Guidance, Control, and Dynamics, 2015, 38(8): 1425–1437.

51

Adurthi, N., Singla, P. Conjugate unscented transformation-based approach for accurate conjunction analysis. Journal of Guidance, Control, and Dynamics, 2015, 38(9): 1642–1658.

52

Zhang, S., Fu, T., Chen, D. F., Cao, H. W. Satellite instantaneous collision probability computation using equivalent volume cuboids. Journal of Guidance, Control, and Dynamics, 2020, 43(9): 1757–1763.

53
Foster, J. L., Estes, H. S. A parametric analysis of orbital debris collision probability and maneuver rate for space vehicles. NASA/JSC-25898, 1992.
54

Patera, R. P. Method for calculating collision probability between a satellite and a space tether. Journal of Guidance, Control, and Dynamics, 2002, 25(5): 940–945.

55

Patera, R. P. Calculating collision probability for arbitrary space vehicle shapes via numerical quadrature. Journal of Guidance, Control, and Dynamics, 2005, 28(6): 1326–1328.

56

Bai, X. Z., Chen, L. Research on calculational method of collision probability between space objects. Journal of Astronautics, 2008, 29(4): 1435–1442, 1456. (in Chinese)

57

Bai, X. Z., Chen, L. A rapid algorithm of space debris collision probability based on space compression and infinite series. Acta Mathematicae Applicatae Sinica, 2009, 32(2): 336–353.

58

Bai, X. Z., Chen, L. Explicit expression and influencing factor analysis of collision probability between space objects. Chinese Journal of Space Science, 2009, 29(4): 422–431. (in Chinese)

59

Xu, X. L., Xiong, Y. Q. A research on collision probability calculation of space debris for nonlinear relative motion. Acta Astronautica Sinica, 2011, 52(1): 73–85. (in Chinese)

60

Xu, X. L., Xiong, Y. Q. Analysis of the applicability of collision probability algorithms for nonlinear relative motion. Science China Physics, Mechanics and Astronomy, 2013, 56(5): 1041–1046.

61

Xu, X. L., Xiong, Y. Q. A method for calculating probability of collision between space objects. Research in Astronomy and Astrophysics, 2014, 14(5): 601–609.

62

Serra, R., Arzelier, D., Joldes, M., Lasserre, J. B., Rondepierre, A., Salvy, B. Fast and accurate computation of orbital collision probability for short-term encounters. Journal of Guidance, Control, and Dynamics, 2016, 39(5): 1009–1021.

63

García-Pelayo, R., Hernando-Ayuso, J. Series for collision probability in short-encounter model. Journal of Guidance, Control, and Dynamics, 2016, 39(8): 1904–1912.

64

Maron, M. J. Numerical Analysis: A Practical Approach. New York: Macmillan Publishing Company, 1982.

65

Patera, R. P. Collision probability for larger bodies having nonlinear relative motion. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1468–1472.

66
Coppola, V. T., Woodburn, J., Hujsak, R. Effects of cross correlated covariance on space-craft collision probability. In: Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting, 2004: AAS 04-181.
67
Coppola V. T. Evaluating the short encounter assumption of the probability of collision formula. In: Proceedings of the 22nd AAS/AIAA Space Flight Mechanics Meeting, 2012.
68
Schaeffer, V., Laurens, S., Seimandi, P., Delmas, F. Collision probability through time integration implementation and operational results. In: Proceedings of the 15th International Conference on Space Operations, 2018: AIAA 2018-2720.https://doi.org/10.2514/6.2018-2720
69

Alfano, S. Eliminating assumptions regarding satellite conjunction analysis. The Journal of the Astronautical Sciences, 2012, 59(4): 676–705.

70
Alfano, S. Addressing nonlinear relative motion for spacecraft collision probability. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2006: AIAA 2006-6760.https://doi.org/10.2514/6.2006-6760
71
McKinley, D. Development of a nonlinear probability collision tool for the earth observing system. In: Proceedings of the 15th AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2006: AIAA 2006–6295.https://doi.org/10.2514/6.2006-6295
72

DeMars, K. J., Cheng, Y., Jah, M. K. Collision probability with Gaussian mixture orbit uncertainty. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 979–985.

73

Vittaldev, V., Russell, R. P. Space object collision probability using multidirectional Gaussian mixture models. Journal of Guidance, Control, and Dynamics, 2016, 39(9): 2163–2169.

74

Shelton, C. T., Junkins, J. L. Probability of collision between space objects including model uncertainty. Acta Astronautica, 2019, 155: 462–471.

75
Chan, K. F. Spacecraft collision probability for long-term encounters. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, 2003: AAS 21–604.
76

Luo, Y. Z., Liang, L. B., Wang, H., Tang, G. J. Quantitative performance for spacecraft rendezvous trajectory safety. Journal of Guidance, Control, and Dynamics, 2011, 34(4): 1264–1269.

77
Foster, J. The analytic basis for debris avoidance operations for the International Space Station. In: Proceedings of the 3rd European Conference on Space Debris, 2001.
78
Pulido, J. A., Sánchez, N., Poniente, R. D., Str, R.B., Gran De, I., Merz, K. ESA's collision risk assessment and avoidance maneuvers tool. ESA, 2013.
80
Gavin, R. T. NASA's orbital debris conjunction assessment and collision avoidance strategy. In: Proceedings of the 33rd Annual AAS Rocky Mountain Guidance and Control Conference, 2010.
81
Phillips, M. R. Spacecraft collision probability estimation for rendezvous and proximity operations. M.S. Dissertation. Utah, Logan, USA: Aerospace Department, Utah State University, 2012.
82
Acciarini, G., Pinto, F., Metz, S., Boufelja, S., Baydin, A. G. Spacecraft collision risk assessment with probabilistic programming. In: Proceedings of the 3rd Workshop on Machine Learning and the Physical Sciences, 2020.
83
Browns, A. C. Human spaceflight recent conjunctions of interest. In: Proceedings of the USSTRATCOM Conjunction Summary Message Workshop, 2010.
84

Luo, Y. Z., Liang, L. B., Niu, Z. Y., Tang, G. J. Safety-optimal linearized impulsive rendezvous with trajectory uncertainties. Journal of Aerospace Engineering, 2014, 27(6): 04014038.

85

Sun, Z. J., Luo, Y. Z., Niu, Z. Y. Spacecraft rendezvous trajectory safety quantitative performance index eliminating probability dilution. Science China Technological Sciences, 2014, 57(6): 1219–1228.

86

Sun, Z. J., Luo, Y. Z., Li, H. Y. Uncertainty-dependent warning threshold for spacecraft rendezvous collision probability. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 2–16.

87

Richards, A., Schouwenaars, T., How, J. P., Feron, E. Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming. Journal of Guidance, Control, and Dynamics, 2002, 25(4): 755–764.

88

Wu, B. L., Wang, D. W., Poh, E. K., Xu, G. Y. Nonlinear optimization of low-thrust trajectory for satellite formation: Legendre pseudospectral approach. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1371–1381.

89

Di Cairano, S., Park, H., Kolmanovsky, I. Model predictive control approach for guidance of spacecraft rendezvous and proximity maneuvering. International Journal of Robust and Nonlinear Control, 2012, 22(12): 1398–1427.

90

Morgan, D., Chung, S. J., Hadaegh, F. Y. Model predictive control of swarms of spacecraft using sequential convex programming. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 1725–1740.

91
Park, H., Zappulla, R., Zagaris, C., Virgili-Llop, J., Romano, M. Nonlinear model predictive control for spacecraft rendezvous and docking with a rotating target. In: Proceedings of the 27th AAS/AIAA Space Flight Mechanics Meeting, 2017: AAS 17-496.
92

Bombardelli, C. Analytical formulation of impulsive collision avoidance dynamics. Celestial Mechanics and Dynamical Astronomy, 2014, 118(2): 99–114.

93

Bombardelli, C., Hernando-Ayuso, J. Optimal impulsive collision avoidance in low earth orbit. Journal of Guidance, Control, and Dynamics, 2015, 38(2): 217–225.

94
Greco, C., Sanchez, L., Manzi, M., Vasile, M. A robust Bayesian agent for optimal collision avoidance maneuver planning. In: Proceedings of the 8th European Conference on Space Debris, 2021.
95

Mason, J., Stupl, J., Marshall, W., Levit, C. Orbital debris-debris collision avoidance. Advances in Space Research, 2011, 48(10): 1643–1655.

96

Bonnal, C., McKnight, D., Phipps, C., Dupont, C., Missonnier, S., Lequette, L., Merle, M., Rommelaere, S. Just in time collision avoidance—A review. Acta Astronautica, 2020, 170: 637–651.

97

Gonzalo, J. L., Colombo, C., di Lizia, P. Analytical framework for space debris collision avoidance maneuver design. Journal of Guidance, Control, and Dynamics, 2020, 44(3): 469–487.

98

Wang, Y., Bai, Y. Z., Ran, D. C., Zhao, Y., Zhang, X., Chen, X. Q. The equal-collision-probability-surface method for spacecraft collision avoidance. Advances in the Astronautical Sciences, 2017, 161: 761–776.

99

Wang, Y., Bai, Y. Z., Xing, J. J., Radice, G., Ni, Q., Chen, X. Q. Equal-collision-probability-curve method for safe spacecraft close-range proximity maneuvers. Advances in Space Research, 2018, 62(9): 2599–2619.

100

Wang, Y., Chen, X. Q., Ran, D. C., Ou, Y. W., Ni, Q., Bai, Y. Z. Multi-equal-collision-probability-cure method for convex polygon-shape spacecraft safe proximity manoeuvres. Journal of Navigation, 2019, 72(2): 405–429.

101

Wang, Y., Bai, Y. Z., Ran, D. C., Chen, Q., Ni, Q., Chen, X. Q. Dual-equal-collision-probability-curve method for spacecraft safe proximity maneuvers in presence of complex shape. Acta Astronautica, 2019, 159: 65–76.

102

Hua, B., Huang, Y., Wu, Y. H., Chen, Z. M., Nicholas, D. Spacecraft formation reconfiguration trajectory planning with avoidance constraints using adaptive pigeon-inspired optimization. Science China-Information Sciences, 2019, 62(7): 70209.

103

Hua, B., Sun, S. G., Wu, Y. H., Chen, Z. M. Path planning method for spacecraft formation reconfiguration based on CGAPIO. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 223–230. (in Chinese)

104

Xie, Y. C., Chan, K., Zhang, J. R. Collision probability of composite cubesats hovering in leader-follower configuration. Acta Astronautica, 2020, 168: 211–219.

Astrodynamics
Pages 95-120
Cite this article:
Li J-S, Yang Z, Luo Y-Z. A review of space-object collision probability computation methods. Astrodynamics, 2022, 6(2): 95-120. https://doi.org/10.1007/s42064-021-0125-x

867

Views

17

Crossref

14

Web of Science

21

Scopus

1

CSCD

Altmetrics

Received: 24 May 2021
Accepted: 02 November 2021
Published: 05 April 2022
© Tsinghua University Press 2021
Return